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Abstract

In this article, I introduce a novel applet (“‘module”) for exploring probability distributions, their
samples, and various related statistical concepts. The module is primarily designed to be used by
the instructor in the introductory course, but it can be used far beyond it as well. It is a free,
cross-platform, stand-alone interactive application based on Wolfram Research’s novel
computable document format (CDF) technology. It features over thirty common discrete and
continuous distributions and can be used to illustrate concepts such as random samples,
population and sample means and medians, histograms, kernel density estimators, boxplots, and
cumulative distribution, survival, and hazard functions all while dynamically linking samples
and estimators to adjustable distribution parameters in real-time. Additionally, the module
includes real-world datasets to aid in communicating the concept of fitting a distribution to data.
It is hoped that the module will be helpful to instructors at both the high school and college
levels for the conceptual understanding of distributions. A simplified version geared specifically
toward out-of-class student learning in the introductory course is also made available for
students’ use. Both are accessible from http://www.baylor.edu/statistics/disttool.

1. Background and Introduction

In my experience, one of the difficulties encountered in the introductory statistics course is
establishing the relationship between the theoretical objects of statistics—probability
distributions—and the raw objects of applied statistics—the data. In this article I introduce a
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freely available computer program (“module”) that I hope will help instructors overcome this
hurdle.

The introductory statistics course is nearly a century old and has had a long and varied past
(Aliaga et al. 2005). Over the past few decades, interest in the course has exploded, both in
course enrollment and pedagogy. As a consequence, statistics education now has several
publications, meetings, and even graduate programs. In addition to these, two focus groups have
produced reports giving recommendations for how the introductory statistics course should be
taught. The first, commonly called the “Cobb Report™ after its initiator, George Cobb, is a
synthesized, narrated series of quotes from various members of the statistics education
community published as a note in the Mathematical Association of America’s Notes and Reports
Series. It forwards three primary recommendations (Cobb 1992):

e Emphasize statistical thinking. This is open-ended but includes understanding the need for
data in problem-solving, the difficulty in obtaining it, and understanding variability through
distributions, models and fitting.

e Focus on data instead of theory and/or recipes. “Almost any course in statistics can be
improved by more emphasis on data and concepts, at the expense of less theory and fewer
recipes. (To the maximum extent feasible, calculations and graphics should be automated.)”
(David Moore as quoted in Cobb 1992, p. 7) The notion of eliminating calculations where
they have no redeeming pedagogical value has recently been resounded by Conrad Wolfram,
an advocate for the technology that drives the proposed module (Wolfram 2010).

e Teach through active learning. While active learning is a disputed term, the basic principle
here is to have students actively engaged in meaningful learning activities where analytical
and/or synthetic thought is required; it can include collaborative work. This has been found
to have broad but varied support in areas such as student experience and retention (Prince
2004).

The second report, called “GAISE” for Guidelines for Assessment and Instruction in Statistics
Education and funded and published by the American Statistical Association, builds on the Cobb
Report with six recommendations:

e Emphasize statistical literacy and develop statistical thinking. In addition to the Cobb
Report, GAISE stresses the need for students to be able to read scholarly reports evidenced
with statistical methods.

e Use real data. Resounding the Cobb Report, GAISE encourages using real datasets that
resonate with students. (e.g., perhaps examples with data from Facebook are preferable to
data collected on the anatomy of a mundane species of dragonfly.)

e Stress conceptual understanding, rather than mere knowledge of procedures. Recipes are
thought to be of far lesser value than a more meaningful understanding of purpose and
reasoning strategy.
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o Foster active learning in the classroom. Essentially a reiteration of the Cobb Report’s third
recommendation.

e Use technology for developing conceptual understanding and analyzing data. At the time of
the Cobb Report (early 1990’s), software tools for statistics education were in their infancy
and mostly localized; so its lack of emphasis there is not surprising (Rossman and Garfield
2011). However, by the time of GAISE (2000’s), laptop computers had become mainstream
among students. The recommendation here applies not only to simplifying common
computations and data analysis but also as a means of reinforcing and exploring conceptual
understanding, especially via simulation.

e Use assessments to improve and evaluate student learning. This is a novel and substantive
suggestion of the GAISE report, including suggesting techniques outside of the traditional
homework/testing framework as well as varying the content and frequency of the traditional
assessments. Research in this area in a general context is rapidly evolving for both
traditional lecture-hall settings (see, e.g., Szpunar, McDermott, and Roediger IIT 2008) and
online settings (Szpunar, Khan, and Schacter 2013). It is also being pursued for statistics
education specifically (delMas, Garfield, Ooms, and Chance 2007).

Anecdotally, at least, the two advisories seem to have had widespread readership, and references
to the report can be found in many introductory texts (Peck, Olsen, and Devore 2011 and Weiss
2012, to list a few). Meaningful adoption of these advisories among statistics educators,
however, appears less certain (Rossman and Garfield 2011).

The module presented in this work is a direct answer to the call put out in the fifth
recommendation of the GAISE report to use technology—when helpful—to develop conceptual
understanding. In the process, it indirectly enables several other elements of both reports.

Specifically, in this article I introduce a new interactive module rooted in next generation
technology and geared towards interactively introducing univariate probability distributions.

The software is cross platform, freely available online and executed locally with a free player.

In other words, once the module (and player) is downloaded, an internet connection is not
required. Broadly speaking, the purpose of the module is to introduce students to the concept of
univariate probability distributions, random samples from those distributions, and (to a lesser
extent) fitting distributions to real data. Specific topics included are probability density functions
(PDFs/PMFs), cumulative distribution functions (CDFs) and survival functions, hazard
functions, parameters, random samples and sample size as well as boxplots and distribution
estimates based on histograms and kernel density estimators. Over thirty common parametric
families are available, including the continuous families of the normal, gamma (exponential, chi-
squared), t, F, and beta (uniform) and the discrete families of the binomial (Bernoulli), Poisson,
hypergeometric, negative binomial (geometric), and discrete uniform.

The implementation is highly interactive, allowing for dynamic manipulation of parameters,
hover-over capabilities, and random number generation. Moreover, many of the interactive
objects are dynamically linked for a more natural user experience. For example, when viewing
ten samples from a standard normal distribution, if the user slides the standard deviation
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parameter from one to two (in a continuous motion), the plotted points and any statistics/graphs
based on them also change in real-time to reflect the samples/statistics from the “new”
distribution N(0, 2). The result is a streamlined, fluid interface that is intended to minimize user
frustration and learning time while maintaining a wide range of statistical content. For this
example and for the rest of this article, the reader is encouraged to download the module and
follow along with the examples in the text.

1.1 Previous work

There are several very useful interactive applets that currently exist online to illustrate statistics
concepts, but none operates with qui te the same flexibility, speed, and overall user-experience as
the proposed tool, which can be attributed to the novel technologies used.

The Rice Virtual Lab in Statistics (RVLS) contains a collection of predominantly Java-based
applets along with an online textbook, but it does not have an applet for exploring probability
distributions (Lane 2008). The University of Alabama in Huntsville offers a similarly nice
online resource known as the Virtual Laboratories in Probability and Statistics (VLPS), which
contains a “Special Distribution Simulator” and a “Special Distribution Calculator” that are
somewhat similar to but not quite as polished as the current tool (Siegrist 2006). A third similar,
but significantly more substantial, resource is the Statistics Online Computational Resource
(SOCR), maintained by developers at UCLA (Dinov 2006). Each of these resources focuses on
recreating an activity-based laboratory setting where students can generate data and then analyze
it in various ways. Another popular such online laboratory is the Rossman-Chance Collection
(Rossman et al. 2011). These are each in contrast to the module proposed here: while they offer
primarily activity-based self-learning tools, the module here is primarily designed for in-class
instruction by a trained instructor. Moreover, while the module is merely a single application for
instructors to use to illustrate concepts, it effectively combines and enhances the functionality of
several of the applets offered by the previous resources.

In 2008, Kyle Siegrist (creator of the VLPS) and Ivo Dinov (creator of the SOCR) teamed up
with Dennis Pearl to create the Distributome Project, “an open-source, open content-
development project for exploring, discovering, navigating, learning, and computational
utilization of diverse probability distributions” (Dinov, Pearl, and Siegrist 2008). The primary
web technologies used for the Distributome are HTMLS and JavaScript, which are both very
powerful state-of-the-art tools for web development. While the vision is excellent—it even
allows for user-contributed distributions—Distributome’s progress is still actively being
developed, and the advanced web technologies it uses require a considerable amount of time to
create. Consequently, many elements of the site still use legacy materials in Java from VLPS
and SOCR. For example, its distribution calculator, experiment, and simulation applets all
appear to be identical to the VLPS tools. As a related side note, Distributome also includes an
elegant (force-directed) interactive network showing the relationships between distributions,
another nice resource for which is the interactive Univariate Distribution Relationships chart
maintained by The College of William and Mary (Leemis, Luckett, Powell, and Vermeer 2012).
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2. Wolfram CDF Technology

In Summer 2011, Wolfram Research Inc. (WRI), the developers of the blockbuster computer
algebra system Mathematica and online computational knowledge engine Wolfram|Alpha,
released a new technology it called the computable document format (CDF). The innovation
comes in the form of (1) a new kind of file format with extension .cdf and (2) a viewer called the
CDF Player. The tool presented in this work is a program—for lack of a better descriptive—a
single CDF file made with a Mathematica script. In the statistics literature, similar programs
have often been called applets (after Java applets, “little applications,” and the corresponding
HTML applet tag) or widgets. I use the term module to make the distinction in technologies and
to lay the foundational language for a more substantial future work comprised of several
modules.

In some ways, CDFs are analogous to Adobe System’s ubiquitous portable document format
(PDF), and the CDF Player analogous to Adobe Reader. Following the analogy a bit further,
Wolfram’s flagship mathematical software Mathematica plays a role similar to Adobe Acrobat.
CDFs are written and deployed using Mathematica and can be viewed with either Mathematica
or the CDF Player, just as PDFs are often authored and edited with Acrobat and viewed with
either Acrobat or Reader. Acrobat and Mathematica are both purchased applications with
various levels of licensing, and Reader and the CDF Player are free downloads which allow for
the viewing of their associated file types by non-paying customers.

While the analogy with Adobe products is useful for understanding the suite of software, there
are a number of distinctive and revolutionary features of Wolfram’s suite. First and foremost,
CDFs are interactive documents, whereas PDFs are by and large static documents. In particular,
CDFs can draw from the vast interactive resources and real-time computing ability of
Mathematica. Interactive plots, diagrams, and general viewing content can be manipulated with
sliders, buttons, drag down menus, mouse-over capabilities and other event handling, and input
fields. (Field entries are limited in the free versions.) Each of these interactive capabilities and
dozens of others come together to provide the seamless, natural user experience that has
characterized the day-to-day mainstream technologies used by today’s students. Additional
distinguishing features of the CDFs include access to optimization routines and other
sophisticated algorithms (indeed, much of the full power of Mathematica), internet connectivity
and data acquisition, and the ability to be seamlessly integrated into webpages using a simple
JavaScript tag, also made by WRI.

The ability of the CDFs to draw from the tremendous resources of Mathematica is an incredible
boon to the development and practical utility of the module. For the past few versions of
Mathematica (7, 8, and 9, the current version), WRI has been boosting Mathematica’s statistical
capabilities. For example, it now boasts the largest assortment of probability distributions of any
computer software (Wolfram Research Inc. 2010). The distributions have an easy, systematic
referencing system that is also helpful. Most importantly for distributions, however,
Mathematica has the ability to handle probability distributions as abstract objects distinct from
any particular representation (e.g., its pdf). It then has several built-in functions to manipulate the
abstract distributions. For example, simple functions exist which compute special functions
associated with the distributions (pdfs, cdfs, mgfs, hazard functions, etc.) that are then also
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symbolically represented and can be evaluated on demand. Other functions exist to transform
distributions, compute summaries (e.g. expectations and quantiles), and sample from
distributions. An example of this is shown Figure 1. This is in stark contrast to the preeminent
statistical computing environment R, which has different functions that numerically evaluate—
not symbolically represent—special distribution functions and simulate from those distributions
(and even then not to the extent of Mathematica’s capabilities). For example, in R, one uses
dnorm (0) to give the value of the pdf of the standard normal distribution at 0, pnorm (0) to
give the value of the cdf at 0, and rnorm (10) to generate 10 samples from the distribution, but
there is no mgfnorm function for computing values of the moment generating function or hnorm
for computing the values of the hazard function. Thus, Mathematica provides a systematic and
concise framework for reliable statistical computing not currently offered by other applications.
(Of course, Mathematica’s implementation has limitations that don’t exist in R. For example, it
handles data in a way that is counter-intuitive for many R users.) Finally, to add to these
distribution-related capabilities Mathematica has built-in functionality for several statistics
concepts: histograms, maximum likelihood estimators, and kernel density estimation to name a
few. Each of these aspects combines to make a tremendously powerful framework for the
creation of the module discussed in this work.

Figure 1. Mathematica can manipulate abstract distributions.

In[1}:= LILC C I C
dist = NormalDistribution[0, 1];
= : i
PDF [dist, x]

HazardFunction[dist, x]

Inf4]:= ! 3 x

RandomVariate[dist, 10]

o {1.47604, -0.75576, -0.172912, 0.415342, 0.279957,
0.274602, 1.0022, -0.261818, 0.324103, 0.688944}

e rans
Simplify|

PDF [TransformedDistribution[X?, X~ dist], x|,
x>0]

e x/2

Ous)= m

The practical demands of computers in today’s learning environments require a bit more than a
powerful development framework; they require flexible and diverse dissemination outlets. To

match the problem of different students having different machines, CDFs and the CDF Viewer
are portable across most current operating systems: Windows, Mac, and several Unix-based
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operating systems. Additionally, although the CDF technology is currently limited to traditional
computer input (mouse, keyboard, etc.), WRI has committed to developing the technology for
multi-touch devices such as iPhones and iPads, which is certain to increase module functionality
and interest among today’s students (Wolfram Blog Team 2012).

In brief, WRI’s new CDF technology provides an exceptional platform for making interactive
statistics modules that contributes directly to the current modules flexibility, stability, and user-
friendliness. Of course, creating your own CDFs does require (1) a Mathematica license and (2)
a modest investment of time to learn the basics of the Mathematica language, but there are
several resources that can help, including an active mailing list and stackexchange.com listing.
Mangano (2010) is another excellent resource. If additional features are needed, for example if
you want to create a module that can load user-input data, more expensive licenses are required
from Wolfram. The reader is referred to http://www.wolfram.com/cdf/ to answer such queries.

It has not escaped the author’s attention that the module in the current article is only scratching
the surface of the CDF’s potential in statistics education. An ongoing work called the
BaylorISMs Project is actively being developed which brings together the CDF with several
other current and next-generation computer and web technologies for a single, systematic online
statistics resource. A summary exposition of the workings of this research is the focus of a
future article. The current article discusses a single deployed CDF, which can be viewed by the
free CDF Player. It is freely distributed under a CC BY-SA 3.0 license (the same kind of license
as Wikipedia) and can be downloaded from http://www.baylor.edu/statistics/disttool (Creative
Commons).

3. Capabilities

Figure 2 illustrates what the user sees upon opening the module: a heavy mix of buttons, sliders,
fields, dropdown menus, and a large display window showing the pdf of the standard normal
distribution. Since the module’s functionality is immense and detailed, rather than go into the
minutiae of the inner workings of the code the purpose of this section is provide an overview of
the basic capabilities of the module, which can be divided into (1) distribution settings, (2)
simulated data settings, and (3) real data settings. This section introduces the capabilities of
modules by explaining them by type.

3.1 Distributions and equivalents

The primary purpose of the module is to give the instructor a flexible tool for presenting
(univariate) probability distributions. Thus, it is natural that the first controls the user sees when
opening the module manipulate which distribution is being referred to, and how that distribution
should be presented.

In order to provide a uniform layout of the options for distribution, simulated data, and real data,
“presentation” buttons for displaying the density, hazard, cdf, survival, mean, median, and
boxplot of the distribution are listed first. Clicking any one of these will activate the button and
illustrate the associated function or point in the display window. By default, the Density button
is depressed, and the standard normal density is displayed.
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Below the presentation buttons is where the distribution family and parameters are set. The
module contains the 37 separate distribution families in Table 1. Both discrete and continuous
distributions are represented, but more continuous distributions (26) are represented than discrete
distributions (11). These families cover most of the distributions taught in a general statistics
curriculum at any level.

Figure 2. Basic breakdown of the module controls upon launch. The top section contains the
controls for the abstract distribution; the middle the controls for the simulated data; the bottom
the controls for the real datasets.
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All the distributions are parametric families. Once a family is selected, the parameters indexing
that family appear as a labeled series of sliders. When the parameters are changed, the
distribution displayed is dynamically (continuously) updated to reflect the new distribution. The
sliders allow for a pre-specified range of the parameters that index the distribution. For instance,
when the binomial family is selected, two sliders pop up: one for the number of trials parameter
N, and one for the probability of success parameter m. Since in theory 7 is any number between
0 and 1, the practical range of the m variable is a mesh on 0—1; however, since N can be any
positive integer, a reasonable range had to be selected, N =1 to N = 50. Similar decisions were
made for every family; the decision was generally made in an attempt to best portray the
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variability of the distributions within that family or some special property of it (e.g., the binomial
distribution becomes bell-shaped for large N for any fixed w). Viewing windows were also taken
into account; see Section 4 on options.

Table 1. Distributions represented in the module.

Bernoulli, beta-binomial, beta-negative binomial, binomial,
Discrete distributions | discrete uniform, geometric, hypergeometric, log-series,
negative binomial, Poisson, and Zipf

Beta, Cauchy, chi, chi-square, exponential, extreme value,
F, Gamma, Gumbel, half-normal, inverse chi-square,
Continuous distributions | inverse gamma, inverse Gaussian, Laplace, Levy, logistic,
lognormal, Maxwell, normal, Pareto, Rayleigh, t, triangular,
uniform, Weibull, normal mixture

To end this subsection, a few additional notes are helpful:

A Boxplot button is available under the distribution section. This displays the boxplot
constructed using the quantiles of the theoretical distribution, which is not done very often. In
some cases it may produce seemingly strange results, particularly with discrete distributions.
This is because the percentiles are computed using the quantile function (inverse cdf) as defined
in the formal probabilistic sense, so the result may be slightly different than expected (for details
see Resnick 2005, p. 179).

Although the standard ranges of the parameters are pre-specified, they can be manually set to any
value and even automatically played like a video by clicking the small plus sign to the right of
the sliders. This is particularly useful for illustrating specific distributions.

Most elements plotted in the display window are accompanied by mouse-over tooltips. For
example, in discrete distributions when the pmf is displayed, hovering the mouse over one of the
plotted points displays the value of that point—the probability of observing that value. For
continuous random variables, the specific pdf is displayed. The same is true of the non-density
distribution related functions (e.g. the cdf) and the distributional summaries (e.g. the mean).

All of the visuals related to the specified distribution are colored a deep blue. This is to
distinguish between those of simulated data (always colored in green) and those of real data
(colored in dark red). These are changeable; see Section 4 on options.

To reset the module, a circled plus button is available in the top-right of the module with an
“Initial Settings” option.
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The Transformed Distribution row of the distribution section computes a simple location-scale
transformation of the (base) distribution. This is particularly useful for use with real data and so
will be discussed more in that section.

The multimodal distribution is a mixture of normal distributions. The mixture weights nk have
sliders that affect the ultimate distribution on a relative scale.

3.2 Distribution samples (simulated data)

The module itself contains a random number generator that can simulate random samples from
any of the distributions listed. This is an incredibly useful and powerful capability that allows

instructors to interactively illustrate the relationship between a distribution, its parameters, and
its samples. An example illustration is Figure 3.

The best place to begin with the simulated data section of the module is by clicking the Points
button. When the Points button is depressed, the individual samples of the distribution are
plotted slightly below the x-axis for easy viewing. They are green and semi-transparent to
reduce overplotting and can be jittered through options. The user can see the individual sample
numbers by clicking the Print button.

The sample size is defaulted to n = 50. This can be changed with the slider directly below the
buttons and, as it is varied, points are added and subtracted from the same simulated sample.
This is helpful as it aids in illustrating the effects of the law of large numbers—with any of the
distribution and simulated data summary buttons depressed, as the sample size gets larger the
sample estimates approach the population values. (All of the estimators in the module are
consistent.) As an example of how this can be used, when the boxplot of the simulated sample is
compared to that of the distribution, the two are seen to converge as the sample size increases.
The sample size is the one place in the module where flexibility is somewhat limited; for
technical reasons the user is only allowed the pre-specified sample sizes. Nevertheless, sample
sizes up to 500 are allowed.

Perhaps the most useful capability of the simulated data section for students is the histogram
option. The y-axis of the histogram is determined on a density scale as opposed to a count
(frequency) or probability (relative frequency) scale and consequently is a proper nonparametric
density estimator (Scott 1992). However, more relevantly, when both the true distribution
density is displayed with the histogram, the practical purpose of the histogram is obvious at a
glance, and so are concepts such as its variability through resampling (with the Resample button)
and histogram bin width (under Options > Histogram and density options > Simulated data).
Moreover, here as before the concept of the law of large numbers can be seen—as the sample
size increases, the bins heights approach the density-scaled probabilities of landing in the
individual bins.

10
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Figure 3. The histogram, kernel density estimate (KDE), and boxplot of a simulated dataset.
Note the mouse-over abilities in the histogram and boxplot images and the single kernel visible
in the KDE for the solitary point near -3.

1.0[

0.8

0.6

1 2 4
Distribution Density Hazard CDF Survival Mean Median i Boxplot
Normal =
Mean p = p—— Standard Deviation o =1
Transform Distribution : |ocation |0 Scale |1 Auto Reset
Sim. data | Density | | Hazard CDF Survival Mean Median | Boxplot |
[(Histogram | [ Peints | | Print Resample
Sample Size - () » 50
Real data | pensity Hazard CDF Survival Mean Median Boxplot
Histogram Paints Print None _:!

» Options

The first row of the simulated data controls contains the same presentation bar as for the
distribution controls. Here the sample density, CDF, survival and hazard functions are those of
the distribution given by the kernel density estimate, the mean and median are those of the
sample, and the boxplot is the ordinary boxplot of the sample; moreover, mouse-over capabilities
abound.

All of the elements of the simulated data section are dynamically linked to those in the
distribution section, which creates for a very fluid feel. As the parameters are varied, the data
points are continuously transformed to samples from the new distribution. How? The samples
themselves are simply continuous functions of uniform 0—1 samples and the parameters of the
distribution (excluding rounding in discrete cases); thus as the parameters are varied, the points
are smoothly moved to being proper samples from the newly set distribution. The sample
estimates are also updated dynamically in real-time as the samples themselves are, making for a
natural user experience that highlights conceptual understanding.

11
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3.3 Distribution samples (simulated data)

A repeated advisory in both the Cobb report and GAISE is an emphasis on real world data (Cobb
1992, Aliaga et al. 2005). The module tries to help instructors illustrate aspects of real world
data and fitting distributions by including five real world datasets:

The variable petal length from R A Fisher’s famous iris dataset, n = 150 (Fisher 1936).
Eruption durations from the Old Faithful dataset, n =272 (Azzalini and Bowman 1990).
Michelson’s 1879 speed of light measurements, n = 100 (Stigler 1977).

Tip amounts by table collected by a waiter, n = 244 (Berenson, Krehbiel, and Levine 2006).

A collection of test scores from an intro course I taught at Baylor, n = 89.

The control panel for the real datasets is identical to that for the simulated datasets and operates
identically but independently. Thus, you can view the boxplots, means, medians, histograms,
and density estimates as before, and compare those to theoretical distributions.

This is where the location-scale controls come in for the theoretical distributions. As mentioned
in the discussion on distribution controls, the sliders controlling their parameters only allow for
certain ranges. But the datasets are typically very different from these ranges. Michelson’s
speed of light data provides a good example. When looking at the histogram of the data with the
default 30 bins, the data look quite bell-shaped, indicating a normal distribution would be a good
approximation. The sample mean is 299852 with standard deviation 79; however, the normal p
parameter slider only ranges from -3 to 3 and the standard deviation slider from .01 to 5—well
outside any reasonable viewing window for the data. The location/scale transformation fixes this
problem by allowing the user the ability of transforming the base distribution. While the
transformation can be put in manually into a field, an Auto button is available which runs a
simple heuristic optimization routine to find a reasonable base location/scale value. Once at the
right location/scale, the controls for p and ¢ then work exactly as you would like them to—they
manipulate the distribution on the new scale. The result is the ability to visually “fit” the
distribution to (say) the histogram of the data. An example is provided in Figure 4, where
Fisher’s iris petal length data are fit with a normal-mixture distribution (“multimodal” in the
module) by first visually comparing the histogram to the normal-mixture density and then
checked by visually comparing the data simulated by that normal-mixture with the raw data.

Each of the datasets is interesting in its own way. These are discussed further in the next section.

4. Teaching tips

There are several statistical concepts that can be explored with the module. In this section, |
highlight some that I find particularly helpful. I begin, however, by explaining some of the
options available in the module.

4.1 Options
The module comes equipped with several built-in options accessible via the drop-down menu in
the bottom left of the module. When clicked, the user is presented with a “Jitter points” button,

which simply adds noise to the plotted points to further reduce overplotting, and four more drop-
down menus. A cropped screenshot of the options menus can be seen in Figure 5.

12
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Figure 4: Fisher’s iris petal length data visually fit by a mixture of two normal distributions after
an auto location/scale transformation.
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General options. In this menu, the user can select the font size for when the simulated or real
data are printed, along with rounding options and sorting. Additionally, the user can manipulate
the plot size (useful when using projectors) and control random number generation for
reproducible graphics.

Axes options. While the default axes specifications are sufficient in most cases, there are still
countless illustrations which require a changing of the default specifications—removing the y-
axis for better visibility, taking the x-axis out further or bringing it in, etc. All of these and more
can be set under the Axes options menu.
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Figure 5. Module options from color to axes to histogram bin width are available by clicking the
drop-down triangle next to Options.
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Color and style options. By default, every function related to one of the schemes (distribution /
simulated data / real data) has the same color (blue / green / red). They are fairly thick solid
lines, and contain a color fill below them of a certain transparency. Each of these options can be
easily changed so that the user is not limited by default color and style schemes.

Histogram and density options. Although the histograms and density estimators can be plotted in
a single click, much more goes into creating them. Selections of the binning method for
histograms (manual or automated, e.g. Sturges’ rule) or the kernel type/bandwidth for the density
must be made. These are largely defaulted to reasonable choices that can be manipulated by the
user.

All simulated and real data are, by default, considered continuous, and their density is estimated
using kernel density estimation. Once the density estimate is known, the CDF/survival/hazard
functions key off of the density estimate. As an alternative, for both the simulated and real data
the user is allowed to treat the data as discrete. In this case, the empirical CDF Fxn(x) is used and
the other functional forms of the distribution key off of it (the density in that case is just the
relative frequencies of each occurrence).

4.2 Highlights

There are several individual topics that I have found the modules particularly effective at
illustrating:

Example making. One place where I have found the module useful is the creation of examples
for supplement handouts and tests. For example, test figures assessing student understanding of
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distribution shape through histograms can be very easily generated by selecting the appropriate
distribution (normal, beta, exponential, etc.) and clicking the Histogram button under simulated
data. The figures can be easily extracted using third party software such as Jing (free). An
example is Figure 6. Example questions include: Name the shape of this distribution; Given the
histogram below, would you expect the population to be skewed and if so, how?; Given the
histogram below, would you expect the mean to be greater than, smaller than, or equal to the
median?

Figure 6. Making example/test figures with screenshots.
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Histogram binwidth. In elementary applied statistics courses, histograms are one of the first
topics discussed. I have noticed a significant improvement in student learning and understanding
of concepts such as bin width and variability (through resampling) when using the module. The
interactive manipulation of binwidth really helps to explain the importance of binwidth selection
(Options > Histogram and density options > Simulated data). An example is contained in Figure
7. The real-time responsiveness of a slider governing the binwidth is a simple but vast Figure7
improvement over more commonly used applications such as JMP, where the user is forced to
navigate a drop-down menu before manually typing in a different binwidth and recomputing the
histogram every time she wants a different binwidth. Variability of the histogram for a given
sample size can be seen through resampling, an insight that can be used to motivate normal
quantile plots. Specifically, by setting the distribution to normal, turning on the simulated data
histogram, setting the sample size to 10 or 20, and resampling, you can illustrate how small
normal datasets may appear very non-normal using a histogram.
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Figure 7. Interactive histogram binwidth selection on the tips dataset reveals that tippers usually
round to convenient quantities.

Mo

The normal approximation to the binomial. In anticipation of the normal approximation to the
binomial for the classic CLT confidence intervals and hypothesis tests for a proportion, selecting
the binomial distribution, showing the density, and ramping up the number of trials N clearly
shows the bell shaped behavior of the distribution, and shows how it breaks down as m gets close
to 0 or 1. An example is contained in Figure 8.
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Figure 8. Illustrating the normal approximation to the binomial (r = .50), and how it breaks
down (7t = .95), with N = 25 trials.
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Kolmogorov-Smirnov (KS) test statistic. While the module is really geared towards instruction at
the introductory level, it is by no means limited to that level. One example can be seen when
trying to illustrate the KS test statistic. As another application of the law of large numbers, the
empirical distribution function Fa(x) converges pointwise to the (population) distribution
function F(x); similarly, the empirical survival function 1 — Fa(x) converges to the (population)
survival function 1 — F(x). The test statistic of the Kolmogorov-Smirnov goodness-of-fit test is
simply the largest vertical difference between the empirical distribution (or survival) function
and the population distribution (or survival) function times the square root of the sample size; it
rejects the proposed distribution when the test statistic is too large. While the module cannot
compute the test statistic, the intuition can be easily communicated. This is illustrated in Figure
9, which compares survival functions instead of distribution functions. The test statistic would
be the largest vertical distance between the empirical survival (in green) and the true survival (in
blue), which appears to happen around x = 1.25 or 1.5, times the square root of the sample size.
The distribution of the test statistic under the null hypothesis is, of course, very far outside the
range of an introductory course and even some graduate courses. Increasing the sample size, we
note that the maximum distance decreases.

Figure 9. The Kolmogorov-Smirnov test using the survivals.

1.0¢
0.8
06
04
02
5 6
Distribution | Density Hazard CDF I:M Mean Median Boxplot
Exponential ﬂ
Rate A e r——
Transform Distribution : Location |0 Scale |1 Auto Reset

Sim. data Density Hazard CDF I:M Mean Median Boxplot

Histogram | [Points | | Print Resample

Sample Size - { ) 30

5. A Simpler Module for Students

As most educators have experienced, students tend to have a better learning experience when
applets are available at increasing levels of sophistication as opposed to a single high-level applet
(Saw 2011). To meet this need for the probability distributions module, a simplified module is
also provided. The module has significantly limited functionality when compared to the teaching
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module, but it still hits many of the key concepts of distributions and their samples. See Figure
10 for a screenshot.

Figure 10. Screenshots of the simplified student module.
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While the simpler tool is not as flexible as the larger tool, it still provides a wealth of opportunity
for the student both as an in-class tool and an out-of-class tool. Here is a simple exercise for the
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introductory level that can help students understand variability in boxplots and how to interpret
skewness in a boxplot:

1. Set the distribution to Normal and vary the Mean p slider and the Standard Deviation ¢
slider to observe their effect on the distribution. Describe the shape of a normal
distribution.

2. Now change the distribution to Exponential, and vary the Rate A slider. How does the rate

parameter affect the exponential distribution? Describe the shape of an exponential
distribution.
Change the distribution back to Normal and, using the plus boxes to the right of the sliders,
change p to 0 and o to 1. Click the Distribution Density button to turn it off, and then click
Boxplot under Sim. Data. Click Resample several times to observe the variability of a
boxplot created from 50 samples from a normal distribution. Now, change the distribution
back to Exponential, and set A to 1 and click Resample several times to note the variability
of a boxplot created from 50 samples from the exponential distribution. Comparing the
two types of boxplots, and using your answers to 1. and 2., how might you use boxplots to
compare the shapes of distributions?

6. Conclusions

In this article, I have introduced a novel pedagogical module, freely available online, that can
help teachers motivate and animate statistical concepts. Due to the complexity of the module, it
is accompanied by a simplified module for student use. Both are created using the revolutionary
.cdf technology of Wolfram Research, which affords developers a high-powered framework for
interactive mathematical and statistical computation that is translated into a fluid user
experience. It is hoped that the module will be helpful to instructors at both the high school and
college levels for the conceptual understanding of probability distributions.
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