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Abstract

We consider the effect on estimation of simultaneous variable centering and interaction ef-
fects in linear regression. We technically define, review, and amplify many of the statistical
issues for interaction models with centering in order to create a useful and compact refer-
ence for teachers, students, and applied researchers. In addition, we investigate a sequence
of models that have an interaction effect and/or variable centering and derive expressions
for the change in the regression coefficients between models from both an intuitive and
mathematical perspective. We demonstrate how these topics may be employed to motivate
discussion of other important areas, e.g., misspecification bias, multicollinearity, design of
experiments, and regression surfaces. This paper presents a number of results also given
elsewhere but in a form that gives a unified view of the topic. The examples cited are from
the area of medical statistics.
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1. Introduction

We consider the case of simultaneous variable centering and interaction effects in linear
regression. The goal is to create a useful reference for teachers and students of statistics,
as well as applied researchers. Thus, we technically define, review, and amplify many of
the statistical issues for interaction models with centering and provide a comprehensive
summary and discussion of key points. While many of the points we raise have been made
elsewhere, they are somewhat scattered across a voluminous literature. The examples cited
are from the area of medical statistics.

By the term variable centering we mean subtracting either the mean value or a meaningful
constant from an independent variable. It is well-known that variable centering can often
increase the interpretability of regression coefficients as well as reduce multicollinearity
between lower and higher-order predictor variables.

To discuss characteristics of interaction effects, we consider a model with two predictors
and their cross-product term. For ease of illustration we assume that continuous predictors
are linearly related to the dependent variable.1 Interaction effects arise when the effects
of predictor variables are not additive, i.e., the effect of one predictor variable depends on
the value of another variable. For example, consider Figure 1 in the context of a potas-
sium challenge experiment2 where Y represents urinary potassium excretion, X1 represents
serum potassium level, and X2 represents glomerular filtration rate (GFR). As GFR is a
measure of kidney function one might expect that the slope of the response Y against serum
potassium level X1 would increase for higher GFR levels X2. This is often referred to as a
reinforcement or synergistic interaction, whereas an offsetting or interference interaction
effect occurs when the slope of the response decreases for higher GFR levels X2. Moreover,
centering of GFR and serum potassium could enhance the interpretability of the regression
coefficients given that it is not meaningful to consider a subject with a zero value for GFR
or serum potassium.

When adding centering to a model that includes an interaction term, the magnitude and
standard error of certain estimated coefficients change. Indeed, as researchers often sift
through several different models, many of which yield the same fitted values merely under
different parameterizations, the potential for confusion is high. In this paper we attempt to
provide a compact guide to help reduce such confusion. In Section 2, we provide separate
overviews of variable centering and interaction effects. In Section 3, we consider simulta-
neous centering and interaction effects via a sequence of models. We derive expressions
for the change in the regression coefficients for the new models from both an intuitive and

1For a discussion of relaxing the linearity assumption see Harrell (2001), p.16
2Potassium challenge experiments involve the administration of a potassium load to experimental subjects

in order to investigate the physiology of potassium handling.
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Figure 1. Illustration of reinforcement and interference interaction effects. In the additive
model (a), the relationship between Y and X1 does not depend on the value of X2. In a
reinforcement interaction effect (b), the slope between Y and X1 increases for higher X2
values, while in an interference interaction effect (c) the slope between Y and X1 decreases
for higher X2 values.

mathematical perspective. In Section 4, we provide a list of key points to guide both teach-
ing and applied work with interaction models and centering.3 We conclude with a brief
summary in Section 5.

2. Variable Centering and Interaction Effects

2.1 Variable Centering

Motivations for employing variable centering include enhanced interpretability of coeffi-
cients and reduced numerical instability for estimation associated with multicollinearity.
Consider the standard bivariate linear regression model where scalars Xi and Yi represent
the predictor and response variables, respectively, for the ith observation, and scalar εi

represents the corresponding random error term where the standard assumption is that
εi ∼ N(0,σ2). Omitting the subscript without loss of generality, the “true” population
model is4:

Y = α + βX + ε , (1)

3For assessments of the methodology to detect interaction effects in certain fields (that also attempt to
identify key points) see Carte and Russell (2003); Champoux and Peters (1987).

4Throughout the paper only scalar notation is employed. Greek letters are employed for population param-
eters while the corresponding English lower-case letter represents the corresponding estimator, e.g., (α ,β )
versus (a,b).
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yielding E(Y ) = α +βX for known predictor variable X . However, it is often more appeal-
ing to consider the centered population model:

Y = α∗+ β ∗(X − k)+ ε (2)

= (α∗−β ∗k
︸ ︷︷ ︸

)+ β ∗X + ε , (3)

where one may consider this as the regression of Y on the transformed predictor variable
X∗ = X − k. For instance, consider k = µX = E(X), the population mean of X .5 Although
this change of location of the predictor variable shifts the 0 point to µX , other changes of lo-
cation to another meaningful value k are possible as well. Since E(Y ) = α∗+β ∗(X−µX),
the new intercept α∗ represents the expected value of Y when X = µX , i.e., the expected
value of Y for the average predictor value. If the X variable is a physiological variable
such as weight or blood pressure, the centered model provides a much more meaningful
intercept. Since both population models must yield the same expected values for the same
given X values, it follows that α∗ = α + β µX and β ∗ = β . For instance, E(Y |X = µX) =

α + β µX = α∗ and E(Y |X = 0) = α = α∗−β ∗µX , from which both results follow. Since
correlation properties between variables do not change under linear transformations, the
fact that the estimated slope should not change is also intuitive. It also follows that center-
ing (or any linear transformation) does not alter the coefficient of determination R2 (Arnold
and Evans 1979; Allison 1977).

In practice, the population parameters are unknown and must be estimated via sampled
data (Xi,Yi), i = 1, . . . ,n, yielding the analogous equations for the estimated regression co-
efficients, e.g., a = a∗− bX and b∗ = b. Note that centering predictors by their sample
mean also has the beneficial effect of making the estimate of the intercept independent of
the estimate of the slope.6

In multiple regression, variable centering is often touted as a potential solution to re-
duce numerical instability associated with multicollinearity, and a common cause of mul-
ticollinearity is a model with interaction term X1X2 or other higher-order terms such as X2

or X3. For the case of two predictor variables X1 and X2, when X1 and X2 are uncorrelated
in the sample data the estimated regression coefficient b1 is the same regardless of whether
X2 is included in the model or not (similarly for b2 and X1). This may be seen from the
following algebraic expression for b1 in the standard multiple regression model with two

5Asterisks are employed to denote corresponding parameters and estimators in a transformed model ver-
sus the original model, e.g., α∗ is the intercept in the centered model while α is the intercept in the original
model.

6This result no longer holds if one centers via k where k is not the sample mean.
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predictor variables (Kutner et al. 2004):

b1 =

∑(Xi1−X1)(Yi−Y )

∑(Xi1−X1)2 −
(

∑(Yi−Y )2

∑(Xi1−X1)2

)1/2
rY 2r12

1− r2
12

, (4)

where rY 2 represents the sample correlation coefficient between Y and X2 and r12 represents
the sample correlation coefficient between X1 and X2.7 However, if the predictor variables
are (perfectly) uncorrelated we have r12 = 0 and it immediately follows that

b1 =
∑(Xi1−X1)(Yi−Y )

∑(Xi1−X1)2
, (5)

which by definition is the estimated slope in the bivariate regression of Y on X1 alone.
Note that predictors are often correlated, except for designed experiments where the exper-
imenter may choose the levels of the predictor variables.

When predictor variables are perfectly correlated infinitely many estimated coefficients
provide the same predicted values and fit to the data. Perfect correlation, however, is not
as troublesome as near perfect correlation. Under perfect correlation, the simple solution
is to remove one of the variables since doing so does not remove any information. On the
other hand, if |Cor(X1,X2)|< 1, removing one of the variables entails a loss of information.
Practically, the estimated coefficient b1 changes depending on whether the predictor vari-
able X2 is included in the model or not. This change may be quantified and is commonly
referred to as specification bias. Specifically, if Cov(X1,X2) = σ12 and one estimates a
model without X2 when the model should include X2, one may show that the resulting esti-
mate for the regression coefficient of X1 has E(b1) = β1 + β2

σ12
σ2

1
, i.e., the expected bias in

b1 is thus β2
σ12
σ2

1
(Goldberger 1964). Even if both variables are included, inference becomes

more difficult in the presence of inflated standard errors, i.e., estimation uncertainty, where
a small change to the data can result in a large change to the estimated coefficients. The
more advanced reader may find further details regarding multicollinearity in Christensen
(2002).

2.2 Interaction Effects

Consider multiple regression with two predictor variables. An interaction effect may be
modeled by including the product term X1×X2 as an additional variable in the regression,
known as a two-way interaction term. If there are k predictor variables in the multiple
regression, there are k!

2!(k−2)! potential two-way interactions, and analogously for three-

7Note that there exists the distinction between the population correlation and the sample correlation, and
correlated in sample does not necessarily imply correlated in population, and vice versa.
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way and higher-order interactions. For a simple model with two-way interactions only, the
population model is:

Y = α + β1X1 + β2X2 + β3X1X2 + ε (6)

= α +(β1 + β3X2︸ ︷︷ ︸
)X1 + β2X2 + ε (7)

= α + β1X1 +(β2 + β3X1︸ ︷︷ ︸
)X2 + ε . (8)

The re-arrangement of terms in Equations 6–8 demonstrates the meaning of an interaction
effect, i.e., the slope associated with X1 is no longer simply a constant β1, but rather (β1 +

β3X2), which clearly depends on the value of X2, and similarly the slope associated with X2

is now (β2 + β3X1). The coefficient β1 now represents the effect of X1 on Y when X2 = 0,
whereas β1 in a model without interaction represents the effect of X1 on Y for all levels of
X2. The effect of X1 on Y for non-zero values of X2 is affected by the magnitude and sign
of β3, e.g., if β3 < 0, the effect of X1 on Y is less for higher values of X2 and greater for
smaller values of X2 (interference or offsetting interaction, Figure 1), and vice versa for
β3 > 0 (synergistic or reinforcing interaction, Figure 1).

For instance, for X2 = 0,1,2, we have three different lines for the effect of X1 on Y :

E(Y |X2 = 0) = α + β1X1

E(Y |X2 = 1) = (α + β2)+(β1 + β3)X1

E(Y |X2 = 2) = (α + 2β2)+(β1 + 2β3)X1,

and the bivariate relationship between Y and X1 depends on X2. Note that β3 in isolation
lacks information about the relative strength of the interaction. For instance, β1 may be so
large that even for a seemingly large β3 there is not a substantial impact over the range of
X2 values considered.

Interaction effects are sometimes called joint effects, where the focus (instead of the con-
ditional focus above) is more on how the two variables interact when accounting for the
variance in Y over and above the contributions of the individual additive effects. Indeed, the
interaction term does not assess the combined effect, e.g., a positive interaction coefficient
β3 > 0 only provides slope change information: higher values of X2 correspond to a greater
slope between Y and X1. On the other hand, β3 > 0 provides no information whatsoever
regarding whether Y achieves its highest values for the highest values of X1 and X2 (Hart-
mann and Moers 1999). For example, in Figure 2a and Figure 2b the sign and magnitude of
the interaction coefficient β3 is the same. However, for the range of X1 shown in Figure 2a,
Y is higher when both predictors are high, while in Figure 2b we have Y higher when X1 is
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high and X2 is low.8

Figure 2. Interaction coefficient does not provide information with respect to where de-
pendent variable is higher. In both a) and b), the sign and magnitude of the interaction is
the same. In a), Y is higher when both predictors are high, while in b) Y is higher when X1
is high and X2 is low.

Another problem common with including interaction terms in a regression model is that
such terms are often highly correlated with the corresponding lower order terms. That
is, X1X2 is often highly correlated with both X1 and X2, similar to how in polynomial
regression the higher-order terms like X2 are highly correlated with X . It is often stated
that the standard error of the lower order terms increases when the higher-order terms are
added to a model with only the lower order terms, while the same is not the case in reverse,
i.e., when the lower order terms are added to a regression with only a higher-order term the
standard error of the higher-order term is unaffected (Aiken and West 1991).

Saunders (1955, 1956) was apparently the first to propose methodology to detect interac-
tions for the continuous case and introduced the terms “moderator” and “moderated mul-
tiple regression” (MMR) to describe interaction effects.9 The usual test for interaction in
MMR is via the statistical significance of the semipartial coefficient of determination, i.e.,
the increment in the coefficient of determination between the simple additive model and the
full interaction model (∆R2). This test is equivalent to the standard t-test for the interaction
term as indeed the F-statistic for ∆R2 equals the square of the t-statistic for the interaction

8The figure was generated via the equation Y = α +β2X2 +(β1 +β3X2)X1, with α = 1, β1 = 0.1, β2 = 0.5,
β3 = 0.3, and X2 values fixed at either X1 = 1 or X2 = 2 for different ranges of X1 values.

9Baron and Kenny (1986) later distinguished mediator effects from moderator/interaction effects; a medi-
ator effect is often defined as a relationship such that an independent variable X1 causes a mediating variable
X2 which then in turn causes the dependent variable Y ; see Bauer et al. (2006); MacKinnon and Luecken
(2008); Kraemer et al. (2008) for a full discussion.
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term (Cohen 1978; Cohen et al. 2003). Some authors have critiqued this approach to assess
the strength of interaction via incremental change in R2 and some have offered alternative
measures (Champoux and Peters 1987). Perhaps a more viable approach is to avoid focus-
ing on a single measure and employ graphical techniques and predictive comparisons (see
Section 4).

3. Simultaneous Variable Centering and Interaction Effects

Although the inclusion of an interaction term in a regression model by definition creates
multicollinearity and its ensuing potential problems, this may be improved via centering.
Specifically, if X1 and X2 are not centered, they are highly correlated with the product X1X2

by definition. However, if one assumes bivariate normality between X1 and X2, then each of
the centered variables X1−µ1 and X2−µ2 has a zero covariance and thus zero correlation
with (X1−µ1)(X2−µ2) (Aiken and West 1991). It follows that if the variables are centered,
any correlation with the corresponding interaction term is solely due to nonnormality of the
variables.10 This follows from a result for symmetric variables X1 and X2 (Aiken and West
1991, p.180):

Cov(X1X2,X1) = σ 2
1 µ2 + Cov(X1,X2)µ1, (1)

where Var(X1) = σ2
1 . Thus, we immediately see that if both variables are centered, i.e.,

have mean zero, then the correlation between X1− µ1 and (X1− µ1)(X2− µ2) is zero.
The correlation that exists between X1 and X1X2 when they have non-zero mean is often
referred to as nonessential multicollinearity or nonessential ill-conditioning: it is due to
the scaling and disappears with a rescaling; on the other hand, the part of the correlation
that is due to skew is referred to as essential multicollinearity and cannot be removed via
re-scaling (Marquardt 1980). In any event, for the case where we have only nonessential
multicollinearity within an interaction model, via centering we know that failure to in-
clude the interaction term does not bias the estimated lower order coefficients (since the
multicollinearity has been removed).

However, when centering variables in a model that includes an interaction term, students
are often puzzled by the fact that the estimated coefficients for the lower order terms differ
from those in the corresponding uncentered model. For instance, if the predictor X2 was
centered in Equation (6), β1 would represent the effect of X1 on Y when X2 = µ2 instead
of when X2 = 0. As this represents a different conceptual entity altogether, one should
expect an accompanying change in the estimated coefficients after such a transformation.
Indeed, prior to making such transformation, it helps if the student knows which estimated
coefficients change and which do not, thereby reducing the chance of misinterpretation. It

10Of course in practice we form X1−X1 instead of (X1−µ1), but the same results still follow.
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is instructive to emphasize that standard errors of prediction, standard errors of fit, and the
F statistic do not change for equivalent models. To assess the aforementioned changes in
the estimated regression coefficients, consider the following sequence of models:

M1: Y = α + β1X1 + β2X2 + β3X1X2 + ε

M2: Y = α∗+ β ∗1 X1 + β ∗2 (X2−µ2)+ β ∗3 X1(X2−µ2)+ ε

= α∗−β ∗2 µ2︸ ︷︷ ︸
+(β ∗1 −β ∗3 µ2︸ ︷︷ ︸

)X1 + β ∗2︸︷︷︸
X2 + β ∗3︸︷︷︸

X1X2 + ε

M3: Y = α∗∗+ β ∗∗1 (X1−µ1)+ β ∗∗2 (X2−µ2)+ β ∗∗3 (X1−µ1)(X2−µ2)+ ε

= α∗∗−β ∗∗1 µ1−β ∗∗2 µ2 + β ∗∗3 µ1µ2︸ ︷︷ ︸
+(β ∗∗1 −β ∗∗3 µ2︸ ︷︷ ︸

)X1 +(β ∗∗2 −β ∗∗3 µ1︸ ︷︷ ︸
)X2

+ β ∗∗3︸︷︷︸
X1X2 + ε

For a given set of predictor variables, the expected value of Y is the same under all models
since they merely have changes of location for the same set of predictor variables. Consider
the expected value of Y when X2 = µ2 for Model 1 and Model 2:

Model 1: E(Y |X2 = µ2) = α + β1X1 + β2µ2 + β3X1µ2

= (α + β2µ2)+(β1 + β3µ2)X1

Model 2: E(Y |X2 = µ2) = α∗+ β ∗1 X1.

Thus, equating the respective intercept and slope terms we immediately see that α∗ =

α + β2µ2 and β ∗1 = β1 + β3µ2. Since the coefficient β ∗2 in Model 2 still has the same
meaning, i.e., the effect of X2 on Y when X1 = 0, we should have β ∗2 = β2. This may be
shown algebraically by conditioning on different values of both predictor variables, e.g.,

Model 1: E(Y |X1 = 2,X2 = 0) = α + 2β1

Model 2: E(Y |X1 = 2,X2 = 0) = α∗+ 2β ∗1 −β ∗2 µ2−2β ∗3 µ2.

Equating the expected values and substituting the initial results for α∗ and β ∗1 , it readily
follows that β ∗2 = β2 and β ∗3 = β3.

Regarding Model 3, the meaning of β ∗∗1 is exactly the same as that of β ∗1 , so once again
we have β ∗∗1 = β ∗1 = β1 + β3µ2. Similarly, due to symmetry we have β ∗∗2 = β ∗2 = β2 +

β3µ1. Equating expected values when X1 = µ1 and X2 = µ2 for Model 1 and Model 3, it
immediately follows that α∗∗ = α +β1µ1 +β2µ2 +β3µ1µ2. These results are summarized
in Table 1:
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Table 1. Summary of expected coefficients for each model with respect to M1
Intercept X1 Slope X2 Slope Interaction Slope

M1 (no centering) α β1 β2 β3

M2 (X2 centered at µ2) α + β2µ2 β1 + β3µ2 β2 β3

M3 (both centered at µ1,µ2) α + β1µ1 + β2µ2 + β3µ1µ2 β1 + β3µ2 β2 + β3µ1 β3

The reverse direction, i.e., solving for the coefficients of Model 1 in terms of the centered
Models 2–3, is much simpler as one can directly see the results for factorization of the
centered models accordingly. For example, α = α∗∗− β ∗∗1 µ1− β ∗∗2 µ2 + β ∗∗3 µ1µ2 when
comparing Model 1 to Model 3. The results are summarized in Table 2:

Table 2. Summary of expected coefficients for M1 with respect to M2 and M3

Intercept X1 Slope X2 Slope Interaction Slope
M2 (X2 centered) α∗−β ∗2 µ2 β ∗1 −β ∗3 µ2 β ∗2 β ∗3
M3 (both centered) α∗∗−β ∗∗1 µ1−β ∗∗2 µ2 + β ∗∗3 µ1µ2 β ∗∗1 −β ∗∗3 µ2 β ∗∗2 −β ∗∗3 µ1 β ∗∗3

The expressions above lead directly to calculations of corresponding variances and stan-
dard errors for the estimated coefficients in the various models, either solving for the vari-
ance of a coefficient in a centered model in terms of variances and covariances of coef-
ficients in the uncentered model, or vice versa. For example, since b∗1 = b1 + b3X2, we
have

Var(b∗1) = Var(b1) + X
2
2Var(b3)+ 2X2Cov(b1,b3). (2)

Note that the covariance term in the expression above is likely to be negative, and thus
potentially yield a standard error that is lower than that from the uncentered model. This
follows from the result that predictor variables that are positively (negatively) correlated
have estimated coefficients that are negatively (positively) correlated. Similarly, although
the standard error for b1 in the uncentered interaction model is likely to be higher than that
in the simple additive model, there may exist values of X2 where the standard error for a
particular conditional effect b1 +b3X2 may be less than the standard error of b1 in the sim-
ple additive model. Moreover, one may show that the standard error of a conditional effect
for X1 in the uncentered interaction model is minimized when X2 = Cov(b1,b3)/Var(b3)

(Friedrich 1982). Since the covariance term is only zero if X1 is independent of X1X2

(Kmenta 1971) and this rarely occurs, this explains why the standard error of b1 in the
uncentered model is usually higher than that in centered models.11

11The minimal conditional standard error in the interaction model equals the corresponding standard error
in the additive model multiplied by the ratio of the standard error of estimate from the interaction model to
that from the additive model (Friedrich 1982); and since this ratio is by definition less than one, there exists
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For an illustration of these models in practice, we consider kidney function data from 33
male subjects where the predictor variables are serum creatinine concentration (SEC, mean
= 1.25 mg/dL), age (mean = 56 yrs), and weight (mean = 72 kg) and the dependent variable
is creatinine clearance (CCL, mean = 85.2 ml/min) (Kutner et al. 2004).12 The results for
employing only serum creatinine concentration (SEC) and age as predictor variables when
fitting Models 1 through 3 are shown in Table 3, with the simple additive model included
for reference.

Table 3. Estimated regression coefficients for kidney function data

Intercept SEC Slope AGE Slope SEC*AGE Interaction
M0 (additive) 176.24 (10.23) −43.41 (7.12) −0.66 (0.18) −−
M1 (no centering) 232.65 (37.38) −93.28 (32.59) −1.57 (0.61) 0.77 (0.49)
M2 (AGE centered at mean) 145.03 (9.77) −50.09 (8.15) −1.57 (0.61) 0.77 (0.49)
M3 (both centered at mean) 82.42 (3.25) −50.09 (8.15) −0.60 (0.18) 0.77 (0.49)

In the uncentered model, the large standard errors follow from the high correlations be-
tween SEC and AGE with their product term: 0.9 and 0.8, respectively. The corresponding
correlations in the centered model are 0.5 and 0.07. Moreover, the results illustrate the
aforementioned behavior in the estimates and standard errors, and the mappings between
the coefficients can be verified via Table 1. We note that the standard errors for the coeffi-
cients in Model 1 are the same regardless of whether they are obtained directly from Model
1 or indirectly via a linear combination of terms from Model 3, e.g., b2 = b∗∗2 −b∗∗3 SEC. Re-
call the lower-order coefficients in Model 1 represent conditional effects of a variable when
the other variable is equal to zero. Tate (1984) remarks that for the “central mean effects”,
i.e., the conditional effects when the other variable is equal to its mean, the effects are es-
timated just as precisely regardless of whether the centered or uncentered model is used,
and this is indeed verified for these data. Further insight is obtained by plotting the con-
ditional regression line of creatinine clearance (CCL) versus SEC for several AGE values
as in Figure 3. Taking this one step further, Figure 4 is a plot of the actual CCL-SEC con-
ditional slope versus the continuum of AGE values along with corresponding confidence
bands, where one may attempt to assess significance via non-overlap with the horizontal
zero line. For these data the range of significance essentially corresponds to the range of
the AGE values, and this significance should not be confused with the lack of significance
of the interaction term.13 Both plots are instructive: The former is a direct illustration of

a conditional standard error in the interaction model that is less than the standard error in the simple additive
model.

12Creatinine is a break-down product of creatine phosphate in muscle and is usually produced at a fairly
constant rate by the body. Creatinine is mainly filtered out of the blood by the kidneys and creatinine levels
in blood and urine may be used to predict creatinine clearance (CCl) which reflects renal function.

13The confidence bands in Figure 4 are drawn without consideration to multiple testing and are thus valid
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the relationship between CCL and SEC and contains information on the range of the SEC,
values but is limited to pre-selected discrete AGE values. The latter focuses on the condi-
tional slope itself and its potential statistical significance across the range of all AGE values
and also indicates where the conditional slope is estimated most precisely. See Section 4
(Point 2) for further discussion of regions of statistical significance.14

Figure 3. Interaction plot for Model 3.

4. Key Aspects and Recommendations for Applied Practice

In general, it is recommended to consider centering continuous predictor variables in ap-
plied practice to enhance interpretability of coefficients and reduce numerical instability.
Although some authors advocate standardized transformations for regression predictors
(i.e., subtracting the mean and dividing by one standard deviation), this topic is often con-
troversial (for an annotated bibliography see Firth 1998). For interaction models with cen-
tering, one should be careful when presenting results as the potential for mis-interpretation

for a single test only. These would have to be modified via a suitable multiple testing method such that
inferences would be valid for a specific number of values for the moderator X2 and a given familywise error
(the probability of at least one false rejection); see Bauer and Curran (2005) for details.

14Figure 3 and Figure 4 were generated via java applets that generate corresponding R code (R-Project
2008); See Bauer and Curran (2005) for details.
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Figure 4. Plot of conditional slope of Y (creatinine clearance) on X1 (serum creatinine)
versus X2 (centered weight) for Model 3. The region of significance corresponds to the
X2 values for which the confidence bands do not overlap with zero. Checking whether the
confidence bands overlap zero at a particular X2 value assesses the Y versus X1 relationship
for that particular X2 value.

is high. We provide the following key points and recommendations:

Remark 1. There are no “main effects”
It is fairly common for the lower-order coefficient estimates in an interaction model to
be referred to as “main effects”, e.g., the estimate b1 for the model in Equation 6. Such
language increases the chances that b1 is not understood to be a conditional effect, i.e.,
the effect of X1 only when X2 = 0. Indeed, all effects in an interaction model are condi-
tional, and with continuous variables there exists an infinite number of conditional effects
and there is no reason why one of them should be called the main effect. Moreover, once
one uses the term “main effect”, one is inherently driven towards assessing its particular
statistical significance and not the range of significance (see below). The same arguments
apply for the centered models, as b∗1 and b∗2 still represent conditional effects, albeit con-
ditioned upon different values. If one does not call them main effects, one option is to call
them “linear effects” or “conditional main effects”, thereby emphasizing their inherently

13



Journal of Statistics Education, Volume 19, Number 3 (2011)

conditional nature.

Remark 2. There is a range of significance
If one realizes that there exists a continuum of conditional effects instead of a single “main
effect”, one could determine the subset within this continuum that the variable is statisti-
cally significant. Specifically, since the effect of X1 on Y can be expressed as a function of
X2, i.e., b1 +b3X2, not only does the effect change at each point, so does the standard error
(see Equation 2), t-value, and hence p-value. Thus, one may determine the values of X2

for which the effect of X1 on Y is statistically significant, and similarly for the effect of X2

on Y . A useful exercise is to graph b1 + b3X2 versus X2 with individual or joint confidence
bands and examine for which values of X2 the confidence bands do not overlap with zero
(see Tate 1984; Bauer and Curran 2005 for details). Such a plot not only illustrates the
range of significance but also provides information regarding the values of the moderator
(X2) for which we have the most confidence (via the width of the confidence interval) in
estimating the conditional slope (see Figure 3).

It is instructive to consider the above suggestion with respect to the so-called Johnson-
Neyman method. Specifically, while analysis of covariance (ANCOVA) is commonly em-
ployed to assess differences between groups when controlling for a continuous covariate,
the Johnson–Neyman method determines the range of values for the continuous control
variable(s) for which the conclusion of significant mean differences holds (Johnson and
Fay 1950; Johnson and Neyman 1936; Abelson 1953). For example, when controlling for
two continuous covariates the region of significance would be a two-dimensional region.
Unlike the usual case for interaction models, however, these control variables are of sec-
ondary interest and only serve to properly adjust the mean comparison between the groups
via essentially matching on known characteristics. Moreover, if there is no interaction be-
tween such characteristics and group membership then the region of significance for the
mean difference does not depend upon such characteristics and hence the Johnson–Neyman
technique is unnecessary. Note that the focus of the Johnson–Neyman technique is on
group mean differences as opposed to conditional slopes. However, if X1 is a dichotomous
variable defining group membership and X2 is continuous, then the region of significance
for the conditional slope b1 + b3X2 (of the X1 variable) is equivalent to the region of sig-
nificance for the mean difference between the groups. This is because the regression slope
b1 defines a conditional mean difference between the groups given the coding of X1. For
the general case where X2, . . . ,Xn are continuous, and we only have two-way interactions,
it follows that the (n− 1)-dimensional region of significance of the conditional slope for
X1 (which depends on X2, . . . ,Xn) is equivalent to the (n−1)-dimensional region of signifi-
cance for the mean difference between the groups. For complex models the correspondence
between the region of significance for the mean difference and that of a conditional slope
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may not be as clear.

Remark 3. Different models do not induce multicollinearity and “change” coeffi-
cient estimates
The change in the estimated regression coefficients of an additive model upon introducing
an interaction term is commonly attributed to the multicollinearity introduced by adding
X1X2 to the additive model. This stems from a misunderstanding of the difference between
the reason for the changing coefficients and the ramifications of multicollinearity. Multi-
collinearity is reflected in large standard errors in estimated regression coefficients, and
this essentially means that the coefficients are not very stable, i.e., small changes to the
data can result in large changes in the estimated coefficients (sample to sample variation).
When we go from the additive model to the interaction model, not only do the estimated
coefficients correspond to different parameters with different meaning, we are using the
same data, so regardless this “change” in the estimated coefficients has nothing to do with
multicollinearity.

Remark 4. Multicollinearity does not result in low power in an interaction model
The potential for high probability of Type II error (and thus lower power) in testing for
the existence of interaction effects is often recognized (Zedeck 1971; Morris et al. 1986;
Chronbach 1987; Champoux and Peters 1987; Cortina 1993; McClelland and Judd 1993).
Such potential low power, however, is often attributed to multicollinearity, and some au-
thors have offered solutions to this “problem” (Morris et al. 1986; Cortina 1993). However,
although reducing multicollinearity has benefits as discussed previously, those benefits do
not include increased power when testing for an interaction effect via the standard method
of assessing the statistical significance of the change in the coefficient of determination
∆R2 between the simple additive model and the interaction model (this also corresponds to
the t-test for the interaction coefficient in the full model). Indeed, while a linear transforma-
tion like centering can reduce multicollinearity, the test for interaction in the transformed
model is identical to the test for interaction in the interaction model without centering, i.e.,
the test is invariant with respect to a linear transformation. Thus, multicollinearity does not
reduce the power of the standard test (Cohen 1978; Arnold and Evans 1979; Chronbach
1987; Dunlap and Kemery 1987). On the other hand, the joint distribution of the predictor
variables does indeed affect the power to detect interactions and this explains how tests for
interactions in field studies often exhibit substantially less power than those in optimally
designed experiments (McClelland and Judd 1993; Schepanski 1983; Stone-Romero et al.
1994).15 Other valid concerns for low power in detecting interaction effects relate to mea-
surement error in individual predictor variables that is compounded when forming X1X2 to

15It should be emphasized that the comments above apply to the case where the interaction model repre-
sents the true model; otherwise, see Point 4.5.
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produce lower reliability of the product term (Dunlap and Kemery 1988; MacCullum and
Marr 1995; Busmeyer and Jones 1983).

Remark 5. Multicollinearity does matter for curvilinear terms: Type I error (spuri-
ous interactions) and Type II error (lower power)
Several authors have considered the issue of the relationship between interaction and
quadratic effects (i.e., higher powers X2

i ) (MacCullum and Marr 1995; Busmeyer and Jones
1983; Lubinski and Humphreys 1990; Shepperd 1991). Initial focus was on spurious (false
positive) interactions since the likelihood of Type I error is indeed increased when the
true model contains these higher-order terms and only the cross-product interaction term
is included in the estimated model (Busmeyer and Jones 1983; Lubinski and Humphreys
1990; Shepperd 1991). In addition, there exist scenarios where this omission produces
an estimated interaction effect in the wrong direction when such interaction effects do
indeed exist, i.e., indicating a synergistic/reinforcing interaction when it should be an off-
setting/interference interaction, and vice versa (similar misleading results may occur for
the quadratic terms when they do indeed exist and the cross-product term is omitted, i.e.,
indicating a concave relation when it should be convex, and vice versa) (Ganzach 1997).

Spurious and misleading estimates are not the only danger, however, as the probability
of Type II error for the interaction effect may increase when quadratic terms are added
when the true model does not include quadratic terms, and also when quadratic terms are
omitted when the true model does include quadratic terms (Ganzach 1998). These results
are dependent upon the degree of multicollinearity, where the main message is that the
increase in Type II error is only substantial when multicollinearity is very high (i.e., above
0.7) (Ganzach 1997, 1998). Thus, while reducing multicollinearity is not relevant to inter-
action detection as discussed above in Point 4.4 (where the true model is the interaction
model and the interaction model is estimated), it is relevant to the present discussion of
curvilinear terms and the assessment of corresponding mis-specified models. As in prac-
tice one does not know if the “true” model contains quadratic terms, whether or not to
include them depends on the relative costs of Type I and Type II error. As recommended
by Ganzach (1998), if multicollinearity is not very high, one strategy would be to include
quadratic terms: this provides protection against Type I and Type II error associated with
the interaction when the true model contains quadratic terms, and if the true model does
not contain quadratic terms the resulting increase in Type II error (and loss of power) is
relatively small.

Remark 6. Correlation interactions are not the same as regression interactions
In addition to interaction effects in linear regression, it is common to observe similar dis-
cussions for correlation coefficients where for example the correlation between two vari-
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ables is stratified per levels of a third variable. For instance, it is common in medical statis-
tics for this third variable to be a continuous variable made discrete by partitioning into
“high” and ”low” groups. Many authors have cautioned against the arbitrariness and loss
of information of such an approach (Cohen 1978; Cohen et al. 2003; Altman 1991). Thus,
it is important to recognize the different types of information conveyed by correlation coef-
ficients and regression coefficients to avoid confusion. While the square of the correlation
coefficient r2

XY indicates the percentage of Y variance explained by X variance, the corre-
sponding regression coefficient indicates the expected change in Y for a unit change in X
(rXY = bY X only when σY = σX ). While it has been suggested that testing for interaction in
linear regression yields information regarding correlation interactions (Stone and Hollen-
beck 1984), this has been clearly shown to be incorrect as the regression interaction tells us
nothing regarding whether or not correlations differ across a moderator variable (Arnold
1982, 1984). Indeed, Arnold (1982) contains applied examples where an interaction exists
for the regression but not the correlation, and vice versa. An excellent theoretical exam-
ple therein to underline this point employs a rectangle where Y = area, X1 = width, and
X2 = length: for each level of length, the correlation between area and width equals one
and thus does not change, whereas the regression coefficient (the change in area for a one
unit change in width) depends on the length; hence the interaction exists for the regression
coefficient but not for the correlation. Another useful tool to clarify the distinction between
an interaction for a correlation versus that for a regression coefficient is Figure 5 from Hart-
mann and Moers (1999), where correlation and regression are referred to as strength and
form, respectively. As shown in the figure, a strength interaction involves a change with
respect to the tightness around the same directional relationship, whereas a form interac-
tion involves a change in the direction of the relationship. For example, the relationship
between income and education might have the same form but different strength in males
versus females, or the relationship might have the same strength but different form.

Remark 7. Standard errors have not “increased”
In addition to the common admonitions about changing regression coefficients, students
are often frustrated by the “increased” standard errors in the interaction model as com-
pared to the simple additive model. However, the standard error has not really increased,
i.e., the b∗∗1 in Model 3 is estimating a different parameter than the b1 in Model 1, so it
is just as erroneous to state that the standard error has increased as it is to state that the
estimated coefficient has changed. To be sure, the standard errors of b∗1 and b∗2 may indeed
be large, but this only means that this one particular data set does not allow the precise
estimation of these particular parameters, and that small changes to this particular data set
can result in larger changes to these estimated parameters. Centering may be used to es-
timate coefficients with lower standard errors, but once again it must be noted that these
estimates apply to different population parameters. One should be just as careful with re-
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Figure 5. Illustration of the difference between strength (correlation) and form (regres-
sion), reproduced from Hartmann and Moers (1999) (Figure 3) with permission of Elsevier.

spect to statements about comparing standard errors as one is with respect to statements
about comparing estimates from different models.

Remark 8. No need to estimate centered model results from uncentered model
Related to the previous points, one often finds in the literature the suggestion that the
coefficients of the uncentered model can be better estimated from the coefficients of the
centered model via linear combinations as shown by the horizontal brackets in Models 2–3,
e.g., see Smith and Sasaki (1979). The motivation offered is that the centered model has
less multicollinearity and thus lower standard errors, and thus the estimates of the original
uncentered model are estimated with reduced numerical error. Several points are worth
noting here. First, regarding the point estimates of the coefficients in the uncentered model,
they are exactly the same regardless of whether they are estimated via the uncentered model
or via the linear combinations of coefficients estimated from the centered model. Second,
as noted above, one must be careful by saying that the coefficients of the centered model
have lower standard error, since the coefficients pertain to different population parameters
and thus the standard errors should not be directly compared in terms of one being lower
than the other. Third, it is somewhat pointless to calculate the coefficients of the original
model in such a manner in the first place. The concepts represented by the coefficients
b1 and b2 of the original model, viz., conditional effects of X1 and X2 when X2 = 0 and
X1 = 0, respectively, also exist in the centered model. There is no need to go back to the
original model in practice and there is nothing to be gained from a practical standpoint. The
mappings of the coefficient estimates between the different types of models are instructive
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from a theoretical standpoint, but certainly not as a practical guide for doing statistics.

Remark 9. The simplest moderator variable is an indicator or dummy variable
A point that is often lost amidst the many points about interaction models is that the con-
cept of an interaction effect directly applies to the case of dummy or indicator variables.
For example, if we are trying to predict urinary potassium excretion and X1 is a continuous
variable such as serum potassium level and X2 is a dummy variable for diabetes, adding
the product term X1X2 assesses whether the effect of serum potassium level depends on
diabetic status. If this is the case, the conditional nature of X1 is anchored to only two val-
ues, the value for diabetic versus non-diabetic, whereas if X2 were a continuous variable
there would exist a continuum of conditional effects as discussed earlier. Furthermore, the
distinction can be made that the dummy variable case represents a scenario where vari-
able centering should not be used since the mean value of the dummy variable has no
practical meaning. After teaching dummy variables in a regression setting, the student has
already been exposed to interaction effects, so the case of interaction effects for continu-
ous variables should not be introduced as a completely new topic. This is a problem with
statistics education in general, as the student is often frustrated by the impression that there
are countless topics, when indeed there really are only a few big concepts that have small
variations for different cases.

Remark 10. An interaction model represents a curved surface
When introducing multiple regression, most standard statistics texts make the point that
while bivariate regression is a model of a line in two dimensions, multiple regression with
two predictor variables represents a model of a plane in three dimensions (and a hyperplane
in p + 1 dimensions when there are p predictor variables). When an interaction effect is
present in a model, the plane is no longer flat, but rather curved or warped and the degree
of this distortion from flatness is quantified via b3. Moreover, the shape of the surface does
not change when centering is introduced, it is merely shifted in scale (for illustrations see
Cohen et al. 2003, p. 259). This can be used to emphasize that the interaction coefficient
does not change from the uncentered to the centered model, and that the interaction coeffi-
cient quantifies the degree of warping in the regression surface. Moreover, centering does
not change the predicted values.

Remark 11. The average effect is worth considering
When one centers both predictor variables and includes the corresponding interaction term,
the coefficients for the lower-order terms have a new meaning as well, viz., as the average
effect of the given predictor variable on Y across the range of the other predictor variables.
For example, this can be shown manually by regressing Y on X1 separately for each value
of X2. Assuming there exists an equal number of observations at each X2 level, then averag-
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ing the resulting coefficients yields the estimated coefficient of X1 in the centered multiple
regression; otherwise, the same result is obtained by weighting the average via the num-
ber of observations at each level (Cohen et al. 2003, p.261). A natural extension to this
method is Gelman and Pardoe (2007), where regression coefficients are augmented with a
new measure, average predictive comparisons, obtained as the mean value of the predictive
comparison over some specified distribution of the inputs and parameters. Note that pre-
dictive comparisons (i.e., the expected change in the response variable for a given change
in a predictor variable assuming all other predictors are held constant) directly correspond
to regression coefficients for additive models.

5. Summary

We have revisited simultaneous variable centering and interaction effects in linear regres-
sion. Our compilation represents a reference that covers a wide range of issues and high-
lights common mistakes and misunderstandings in the literature. While many of these
points have been made elsewhere, they are somewhat scattered across a voluminous lit-
erature and are not easily extracted into a useful format. Although the focus has been on
linear regression, similar issues could be considered for more elaborate models such as
mixed-effects or generalized linear models.
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