Journal of Statistics Education, Volume 19, Number 1 (2011)

Journal of
Statistics Education
=== —

A Comprehensive Probability Project for the Upper Division One-Semester
Probability Course Using Yahtzee

Jason Wilson
Joshua Lawman
Rachael Murphy
Marissa Nelson
Biola University

Journal of Statistics Education Volume 19, Number 1 (2011)
http://www.amstat.org/v19n1/wilson.pdf

Copyright (© 2011 by Jason Wilson, Joshua Lawman, Rachael Murphy, and Marissa
Nelson all rights reserved. This text may be freely shared among individuals, but it may
not be republished in any medium without express written consent from the authors and
advance notification of the editor.

Key Words: Markov chain; Probability; Project; Yahtzee

Abstract

This article describes a probability project used in an upper division, one-semester prob-
ability course with third-semester calculus and linear algebra prerequisites. The student
learning outcome focused on developing the skills necessary for approaching project-
sized math/stat application problems. These skills include appropriately defining terms,
making necessary simplifying assumptions, budgeting time, determining when to search
literature, and checking theoretical calculations with simulation. It was assumed stu-
dents would learn the technical material in the process. The result exceeded expec-
tations. This article is written to summarize the project, provide a complete solution
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(including R code with simulations and theoretical solutions), and describe the methods
which facilitated the positive outcome, with the hope that it might be adapted by others.

1. Introduction

This article describes a probability project that was used in an upper division probability
course that helped students transition from theory to application. It was a semester-
length project, incorporating concepts from most parts of the course. The culmination
was the due date at the end of the semester, which was devoted entirely to discussion.
When the day to discuss the Yahtzee projects finally came, I was awestruck. Despite
the difficulties students faced with the calculations and the length of time involved, they
“got it.” I opened the class by taking questions. Three of the first were:

e How do you know when you get it right?
e How do you know when to stop?

o Are there other random variables, or something, that could be used to solve these
kinds of problems?

Their questions revealed that they saw well beyond the specificity of the Yahtzee calcu-
lations to the applicational skill of approaching project-sized applied math/stat problems
on their own. The students did more than merely grasp the technical aspects of the dif-
ferent kinds of probability problems encapsulated in the project. Indeed, they crossed
the threshold of merely solving another difficult math problem into an authentic appli-
cational experience they genuinely wanted to develop for future work. The purpose of
this article is two-fold. First, I (the professor-author Wilson) want to describe the project
and the process that was used to achieve this educational outcome. Second, we (the pro-
fessor and three of the students—authors Lawman, Murphy, and Nelson) want to share
the mathematical details in order that the project might be readily adapted for use by
others.

The structure of the article is as follows. Section 2 contains the links to the supplemen-
tary materials, which include the complete theoretical solutions in R code, along with
simulations. Section 3 describes the project and the literature/resources that led to its



Journal of Statistics Education, Volume 19, Number 1 (2011)

selection. Section 4 consists of the technical solutions to the project items, while Sec-
tion 5 briefly describes the simulations provided in the supplementary material. Section
6 concludes with details about the student learning and other reflections. Due to its tech-
nical nature, Section 4 comprises the bulk of the paper. The reader may skim Section 4
according to interest upon first read.

2. Supplementary Materials

The supplementary materials were written to allow the reader to adapt the project de-
scribed in this article for their own purposes. In order to download the files from the JSE
website, please click on each file’s link.

File Description
Yahtzee_Project.doc Original Yahtzee project handout, editable
YahtzeeRCalculations.R R code with exact calculations for all cases in paper
Yahtzee _Tree_Diagrams.docx Tree diagrams for 3K, 4K, 5K & Full House, editable
Yahtzee_sim.R Simulations, in R, for all cases in paper
Yahtzee_Simulations_Manual.rtf | User’s manual for Yahtzee_sim.R

3. Project
3.1 The Class

A little background helps to frame the project. I am the lone statistician in a pure-math-
oriented mathematics department. This means students usually come to me without hav-
ing experienced a math project of the kind and scope one might find in industry. By the
time they reach my Fall 2009 Probability course, all students had taken third-semester
calculus, linear algebra, discrete structures (which covered permutations and combina-
tions), and a C++ programming course. Twenty-five students were enrolled. The text
was Mathematical Statistics and Data Analysis, 3rd edition (Rice 2007). The semester’s
topics were: axiomatic probability, random variables (about 5 discrete and 5 continu-
ous), joint distributions, expectation, moment generating functions, limit theorems, and
distributions derived from the normal. The grading rubric was: quiz 1 (7.5%), quiz 2
(7.5%), midterm (25%), comprehensive final (35%), and the Yahtzee project was the re-
maining 25%. Homework problems from six chapters of the book were assigned about
every two weeks. Homework papers were fully evaluated and given a score from 0 to
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2. At the end of the semester, homework averages over 1 were raised one level on the
grade scale; averages below 1 were lowered one level on the grade scale. Along with
the regular homework and lectures, I wanted a significant comprehensive project as a
capstone for the course. The goal of the project was to expose the students to the kind of
experience they might have in industry. The project was designed to integrate multiple
topics using multiple problem-solving methods over an extended period of time in a
group setting. Throughout the article I will refer to this experience as “applicational.”
The denouement will be described in Section 6.

3.2 The Game

In the West, the board game Yahtzee has not only been a source of recreational fun, but
also mathematical interest. I decided to leverage the popularity and appeal of Yahtzee
in an attempt to catapult my students through technical details and into an authentic
applicational experience. An Internet search revealed numerous sites of different levels
of sophistication. For example, The Yahtzee Page has rules, tips, online playing, and
some game score calculations (http://www.yahtzee.org.uk). Another example was an
NSF-funded project which posed some specific Yahtzee problems, with solutions, to in-
terest high school students in advanced mathematics (Cornell 2006). The Chance paper
“Yahtzee: The Solution” used a computer to exhaustively calculate the 10'? possible
outcomes to the game (Woodward 2003). After reviewing such resources, on the one
hand, I concluded that the theoretical calculations available did not achieve the level
of difficulty we could attain in the class. On the other hand, The Solution (Woodward
2003) simulation was well beyond our level of difficulty. This left the field open for
fresh work.

The rules of Yahtzee may be summarized as follows. Players have a score card with
13 categories (see Figure 1). The game consists of 13 turns and each turn consists of
up to three rolls of five dice. For the first roll, the player rolls the dice and holds any
combination of them on the side. For the second roll, they toss the remaining dice and
again hold aside any combination of those dice. The third roll repeats the same process
as the second roll. Once the player meets the criteria for the desired category or has
rolled three times in one turn, the turn is scored. The player must then record the score
in a category. If it does not meet any of the criteria, it must be scored as zero points in a
category. The game ends after 13 turns and the final score is a sum of the points scored
for each category, with some bonuses possible.
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Figure 1. Yahtzee scorecard. The first six rows of the upper section and first seven
rows of the lower section are the 13 categories. Other rows are for scoring. The card
will hold six games, one game per column. The first six categories are 1’s, 2’s, 3’s, 4’s,
5’s, and 6’s; they are scored as the sum of the number of faces for that category. The
second six categories have fixed score amounts. The 3-of-a-kind, 4-of-a-kind, and 5-of-
a-kind will be denoted by 3K, 4K, and 5K, respectively. (The 5K is commonly referred
to as a “yahtzee.”) The full-house consists of 3K with a pair. The large-straight is five in
a row and the small-straight is four in a row. The last category is chance, which is the
sum of the five die faces.
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A typical turn in Yahtzee might look something like the following: On the first roll the
player gets 6, 5, 4, 3, and 3. The player places the two 3’s aside and rolls the remaining
three dice. Now the player gets 4, 3, and 3. The player places the additional 3’s to the
side. At this point the player has a four-of-a-kind and now has a one in six chance of
getting a Yahtzee on the next roll. Rolling the last die again to finish the player’s turn
yields a 5. So, the player is left with a four-of-a-kind. This is depicted in the pictures
below.

AEER
Roll 1: Five dice rolled; a ~ Roll 2: Remaining three Roll 3: Remaining
pair of 3’s held dice rolled; two more 3’s die rolled; no match

The player has many choices for scoring this turn, depending on the stage of the game
they are in. Assuming a clean slate at the beginning of the game, as Figure 1, the player
may choose to place his score in one of three categories. Since he has four 3’s, placing
his score in the Upper Section—the three’s category would give him a score of 12.
Alternatively, the player may wish to place his score in the Lower Section, the four-of-
a-kind category which totals up all five dice. This would give the player a score of 17.
Finally, there is the Lower Section—the chance category—which also totals up all five
faces of the dice. This also would give the player a score of 17. If the player were to
achieve this outcome later on in the game, rather than at the beginning, all three of the
applicable category slots may be full. If this is the case the player must unfortunately
choose an unused category and enter a score of 0.

Much of the work on the Web and The Solution are concerned with final scores. By
contrast, in this article we are concerned with the probabilities of meeting the criteria
for a prespecified category on a single turn.
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3.3 The Project

The complete project may be found in the supplementary materials (Yahtzee _Project.doc).
It consisted of the following four parts, to be completed as the course progressed, in
pairs:

1. Select three of the following Yahtzee categories: three-of-a-kind (3K), four-of-a-
kind (4K), full house, small straight, or large straight. Calculate the probability
of obtaining each category in a single turn.

2. Propose a discrete random variable related to Yahtzee. Analyze this random vari-
able as best you can. Ideally, obtain its probability distribution and calculate its
expectation and variance.

3. Calculate the expected value and variance of the score of one of the following
categories: 1°s, 2’s, 3’s, 4’s, 5’s, or 6’s.

4. Write a script that will simulate one of the three categories selected in Part 1.
Run the simulation at least 10,000 times and record the proportion of times the
category occurred. Compare this simulated proportion with your theoretical cal-
culation.

In order to make the calculations tractable, I had the students assume the player was
going for the specified category from the outset (perhaps it is the thirteenth turn of the
game and they are holding for the final category). The directions required students to
make the following additional decisions, which I believe contributed significantly to the
overall success of the applicational learning aspect:

e “Some category definitions are ambiguous (e.g., for 3K, does it count if 4K is
obtained? How about full-house?). Define the category precisely, in order to de-
termine the probability of obtaining it.”

e “There may be occasions where the problem defined is too difficult, or would take
too long. Make simplifying assumptions that will allow you to complete the work.
Be explicit about the assumptions made and the reason for them.”

In Section 6, I discuss possible changes to the project for future courses.
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Figure 2. Yahtzee tree. There are 15 possible paths to obtaining a yahtzee, as traced to

the end of each branch. The first row consists of the five unconditional probabilities and
the second row consists of the 14 conditional probabilities.

4. Solutions

After allowing the students to grapple with the difficulty of the project, about five weeks
into the semester I presented my solution to the 5K category. This raised morale and
gave them a model to follow for 3K and 4K, but left open the full-house or straights
for creativity. In this section, a detailed direct solution to SK will be presented. This
solution provides a model for the others, and parts of it are used to solve the 3K, 4K,
and full-house. The large straight and the expected value of the score of 1’s conclude
the section. The small straight solution uses the same techniques as the large straight,
but was too tedious for inclusion in this article.

4.1 5K (yahtzee) Solution, Direct Approach

Let X; be the event where i dice have the same face, i = 0,2,3,4,5. There is no event
X1 because it is not possible to have one die with the same face. Given the many ways
to obtain 5K, many students became bewildered as to which calculations to perform. In
order to answer this question, and to organize the work, we developed a tree diagram
which depicts every possible path to obtain 5K (Figure 2). By examination of Figure
2, it can be seen that the probability of the SK event is the sum of the probabilities of
each of the 15 paths to obtaining 5K. Let the probability of each path be denoted by
P (Xs ,Xj,X}) , meaning the probability of X; on the first roll AND X; on the second roll
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AND Xj on the third roll, i = 0,2,3,4,5; i < j < 5. Then
P(5K) =Y ) P(Xs5,X;,X). (1
i j

But
P (X5,X;,X;) = P (Xs|X;) P (X;X;) P (X;) )

by conditional probability, where “|” denotes “given.” For example, P (Xs|X>) is the
probability that 4K occurs on the second roll, given that the first roll was a pair. Further-
more, since each roll depends only upon the previous roll, the term P (X3|X3) is also the
probability that 4K occurs on the third roll, given that the second roll held a pair (see
remarks about the Markov property later in this subsection). In this way P (5K) may be
obtained by calculating the 5 unconditional and 14 conditional probabilities indicated
in the tree (Figure 2, unconditionals in the first row and conditionals in the second row).

The unconditional probabilities for the first roll are given in Table 1. The probability
calculations have been written to show the general pattern for P (X;) where the binomial
coefficient represents the number of ways to obtain 7 faces, followed by the product of

the probabilities for each die. The X; case has two possibilities: a single pair (g %) where

the remaining three dice are different (%%%) or two pair (g% : %%) where either one of
the two may be selected ((;) ways to arrange the second pair and divided by two to
select only one). The X3 case has two possibilities: a 3K where the remaining two dice

are different or a full-house.

The conditional probability calculations for the second roll are given in Table 2. For
P(Xz|X>) the first term has all three dice different, whereas the second term has a pair
and a lone die, with G) combinations of ways for them to appear. For P (X3|X>) the
second term is a full house and the third term is when the three dice rolled have the
same face different from the two dice held from the first roll.

There are no new probability calculations required for the third roll because they are
the same as those required for the second roll. The probability of event X; occurring on
the second roll given event X; on the first roll is the same as the probability of event X;
occurring on the third roll given event X; on roll two, i = 0,2,3,4,5; i < j < 5. That is,
P (XJ |Xl) has the same value, irrespective of which roll. This is the Markov Property,
namely that the probability of transitioning to a higher state, X;,, depends only upon
the the present state, X;, and not any prior states X;_1,X;_7,.... This observation made
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Table 1. The five unconditional probabilities for a yahtzee
’ Term ‘ Expression ‘ Value ‘
Pow) | (83433 0926

61 3)61 51
5 543 4
P) | () |ggeset 2 55 g5 | 094
~~~ N~
L pair pair  pair
611 61151
PX) | Q) |=2233+-=-2== 1929
)1 6) |5660% 56666
—— S~
L 3K 3K  pair
POy | (ebies 0193
Pus) | (84 0008

sense to the students here (and relieved them!), and was used to introduce Markov chains
later.

The 5 unconditional probability calculations (Table 1) and the 14 conditional calcula-
tions (Table 2) were coded in R (see supplement YahtzeeRCalculations.R for R script
containing all exact calculations shown in article), along with Equations (2) and (1) to
obtain P (5K) directly. This whole process was the most difficult part of the project for
the students, and they sensed that there was a better way.

4.2 5K (yahtzee) solution, Markov Chain approach

Let p;; = P(X;|X;) be the probability of moving from state X; to .X;. For example,
P24 = P(Xy4]X2) = 0.0694 is the probability of going from holding a pair, rolling the
remaining three dice, and obtaining two faces the same as the original pair resulting
in four-of-a-kind. This event is the same probability whether it occurs on the second
roll, third roll, or even a fourth roll that would be in violation of Yahtzee rules. Then
P = (pij) ,1=0,2,3,4,5 and j = 0,2,3,4,5 is the matrix of transition probabilities

10
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Table 2. The 14 conditional probabilities for a yahtzee. Note: The first five cases are in Table 1, because
P(Xi|Xo) = P(X;), for i =0,2,3,4,5.

Term ‘ Expression ‘ Value ‘
3 543 3 51 4
PaIX) | () |355+ () g5 6 3336
~
L pair
51
PX1X%) | (1) |656+6 ¢4 | +R)366 | 3704
~
L pair
PXX) | ()sss 0694
PXs5|%) | ()6 0046
2 54 51
PX:X3) | (5) |22+ 56 6944
~~
pair
Pxs) | ()it 2778
PXs|X5) | (5)id 0278
P(XalXs) | (12 8333
P(Xs1Xa) | (14 1667
given by
X X X Xy Xs
Xo 0926 .6944 .1929 .0193 .0008
Xo 0 5556 3704 .0694 .0046
P, Xi|X;) = 3
ahsee (1) = 0 0 .6944 2778 .0278 )
X4 0 0 0 .8333  .1667
Xs 0 0 0 0 1

Note: The first row and column of P are also denoted as row i = 0 and column j = 0. The

nonzero elements of the first four rows, corresponding to i = 0,2, 3,4, are the 14 condi-

11
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tional probabilities calculated in Table 2. It can be seen that the rows sum to one, since
each forms a conditional probability distribution. The fifth row has pss = P (X5|X5) =1,
for consistency, meaning that once the state Xs is reached the rolling stops. Let pg =
(P00, P02, P03, P04, Pos) - Then pg is the vector of unconditional probabilities given in
Table 1. Therefore the multiplication poP2 yahtzee gives a 1 x 5 vector of the probabilities
of achieving all possible third roll outcomes,

L L P (1.3,) = LEP ()P (/) P (511

where i = 0,2,3,4,5; i < j <k <5 (see Equations (1) and (2)). This follows from the
Chapman-Kolmogorov equations (Ross 2010). The solution of interest, P (yahtzee), is
the fifth element of the vector poP>

yahtzee’

i |
YANZEC 0008 | 2560 | .4524 | 2448 | .0460

The superscript () indicates the event is after the third roll. Thus, P (yahtzee) = 0.0460.
That is, there is a little less than a 5% chance of obtaining a yahtzee on the third roll,
when holding for it from the first roll. For the use of Markov chains in other board
games, see Johnson (2003).

4.3 3K (Three-of-a-kind) and 4K (Four-of-a-kind) Solutions

Define a 3K and 4K as being obtained if a 5K is rolled. For example, a first roll of
(6,6,6,6,6) would count as a 3K or 4K. (In actual game play, it could score as either
one of these, or other categories as well.) For their projects, students were free to define
their category differently, which would change the probabilities. This kind of decision is
one of the realistic aspects of the project that contributed to providing students with an
authentic applicational experience. Intuitively, the solution to the 3K and 4K categories
is contained in the 5K.

The solution vector for the 3K case is

x| x| xP
0008 | 2560 | .7432

“

poPiy =

which is obtained by summing the X3, X4, and X5 cases from the 5K. The solution of
interest, P (3K), is the third element of the vector, P(3K) = 0.7432. Similarly, for the

12
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4K case we have 5 5 ; 5
[ [ |
0008 | 2560 | .4524 | 2908

)
pobix =

which is obtained by summing the X; and X5 cases from the SK. The solution of interest,
P(4K), is the fourth element of the vector, P(4K) = 0.2908.

To justify the above results, we argue as follows. The tree diagrams can be obtained by
starting with Figure 2 and removing the branches which end with X5 (for the 4K) and
X4, X5 (for the 3K). For the 4K category, the resultant tree will have four unconditionals
in the first row and nine conditionals in the second row. For the 3K category, the resultant
tree will have three unconditionals in the first row and five conditionals in the second
row (see figures in supplement Yahtzee Tree_Diagrams.docx).

For the 3K category, Xy and X, are the same events as the SK. However, Xj is different
because for the 5K all five die faces must be specified, whereas for the 3K only three of
the five faces must be specified. Therefore, let X5 denote the event of obtaining three-
of-a-kind, then from Tables 1 and 2,

P(X5) = P(X3) +P(Xa) + P (Xs)
P(X51X2) = P(X5]X2) + P (Xa]X2) + P (X5|X2)
POXEXE) = 1.

Thus, the transition probability matrix for the 3K case is given by

X X X
Xo 10926 .6944 2130

Py (X:1X) = 5

i (K1) X 0 5556 4444 )
X3 0 0 1

which is the same as the transition probability matrix for SK (Equation (3)) with the
fourth and fifth columns added to the third, and the fourth and fifth rows removed. The
po of Equation (4) is the vector of unconditional probabilities for the 3K case, which
is the first row of matrix Psx (Equation (5)). The transition probability matrix is con-
structed similarly for the 4K category (not shown). Multiplying the initial probabilities
(first roll) by the square of the transition probability matrix (second and third rolls) gives
the solution vector (Equation (4)).

13
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4.4 Full House

The full house is similar to the 5K in that dice with the same face are held. The difference
is that we want to obtain two of one face and three of a different face. For notation, let
X;j refer to the event where i dice towards a pair are obtained, i = 0,2, and j dice towards
a 3K are obtained, j = 0,2,3. The general probability calculation for a single possible
full-house outcome is

(# of combs. for pair) x (# of combs. for 3K) x (product of die probabilities).  (6)

Table 4 gives the unconditional probabilities in this form. Below, we consider the two
hardest cases, X>; and Xj3.

Consider the two pair case, X5, (Table 3, second row). The probability expression be-
gins with (g) g% because there are 5 dice from which to obtain any pair of 2 dice with
probability g for the first die, and a match with probability %, to make a pair. The ex-
pression continues with (;) %%‘—é because for the remaining 3 dice, a new pair of 2 is
chosen with probability %%. The last die must be different than the preceding pairs, and
this happens with probability %. For this case, the result must be divided by two because

the combinations account for interchanging the two pairs, which is really the same roll.

Consider the three-of-a-kind case, Xp3 (Table 3, third row). It is satisfied when exactly

three-of-a-kind (g) g%% and two different faces ((5)) %% occur. In addition, it is satisfied

when exactly four-of-a-kind (3) 8111 and one different face (3)3 occurs. In addition,
it is satisfied when a five-of-a-kind (5K, Table 1, fifth row) occurs. Since these are the
only three ways case Xp3 can occur, and they are mutually exclusive, P (Xp3) is the sum

of their individual probabilities.

The general pattern supplied in the above two cases can be used to explain the calcula-
tions given in Table 3. The pattern also explains the conditional calculations in Table 4,
which are even easier, due to fewer dice.

14
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Table 3. The five unconditional probabilities for a full house
’ Term ‘ Expression ‘ Value ‘
Plw) | ()()83432 0926
31
P(Xn) | ()()Eit 55 4630
el
pair
411
PO | (DSOSl (8 | 17as
——
3K
P (Xp) {(;)(3)%%%%2] /2 2315
P(X3) | () () E3sss 0386

Table 4. The nine conditional probabilities for a full house.

’ Term ‘ Expression ‘ Value ‘
P(XoolXo2) | () (523 2778
PXoslX2) | G) D655+ 6) G5+ 0 Bsss | 3519
PXnlX02) | () (0)Fse 2778
P(XxslXo) | ) (Dess+(6) ()56 0926
PXoslXos) | () ©)55+6) D5+ 0 Qss 8611
P(X22|X03) | O 0
P(XoslXo3) | (5)(0) 34 1389
P(XnlX2) | () (0)¢ 6667
P(Xos|Xa2) | (5)(})2 3333

15
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The matrix of transition probabilities is given by

Xoo Xoo  Xoz X X3

Xoo 0926 4630 .1744 2315 .0386
Pruil house = Xo2 0 2778 3519 .2778 .0926
Xo3 0 0 .8611 0  .1389
X2 0 0 0 .6667 .3333
Xo3 0 0 0 0 1

As with the 5K case, let py denote the unconditional probabilities (row 1). The solution
of interest, P (full house), is the fifth element of the vector poP2; 1ouses

Ko | X' | x| ) | Xy

0008 | .0516 | 3453 | 2525 | .3498

2 _
pOPﬁJll house —

The superscript ®) indicates the event is after the third roll. Thus, P (full house) =
0.3498. That is, there is about a 35% chance of obtaining a full house by the third
roll, when holding for it from the first roll.

4.5 Large Straight

A large straight is the die combination (1,2,3,4,5) or (2,3,4,5,6). For calculating the
probabilities, we found it easiest to divide the dice into two categories, those where an
“end” (1 or 6) is obtained and those where “middles” (2,3,4, or 5) are obtained. Let
X;; denote the state where i ends and j middles are obtained, i =0,1 and j =0,1,2,3,4.
For example, the roll of (2,2,4,4,4) would classify as state Xy, having zero ends and
two middles. Thus, X4 denotes the state of having obtained a large straight. The tree
diagram is constructed similarly to Figure 2, except the first row consists of the nine
states Xo1,X02,X03,X04,X10,X11,X12,X13,X14 and the second row consists of 34 states,
Xo1|Xo1,X02|Xo1, - - -, X14]X13 (see the supplement YahtzeeRCalculations.R for the entire
list).

For calculating probabilities, the large straight is significantly more difficult than the
other categories considered so far. We found it easier to compute them using the relative
frequency definition of probability and counting, rather than the multiplication rule of
probabilities, as used up to this point. Thus, the probability of obtaining state X;;, i =0, 1
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and j = 0,1,2,3,4 on the first roll may be computed by

N (%)

P()(l]) = 65 )

where N (X;;) is the number of ways to obtain state X;; and 6° is the number of total
possible outcomes of the five dice. Then

N (Xij) = (#end faces) x (# middle faces) x (# arrangements), (7)

where the three components may be computed using the principles below. As is typical
in combinatorial problems, there are alternative arguments. Although particular cases
may be able to be argued with a simpler method, the principles given here have been
consistently applied to all cases, in order to model the fundamental structure, and avoid
the need for explaining all cases. While the algorithm below could be programmed, it
would be difficult, and it would obscure the case-by-case solution provided in the scripts,
which presents a trove of problems challenging to students. The rules for determining
the values of the three components of Equation (7) are as follows.

e #end faces =1 wheni=0 (Xy;, j=0,1,2,3,4) and 2 when i = 1 (X;;). This is
because when i = 1 there is at least one 1 or one 6 obtained. It does not matter
which is held, or if there were others rolled. Given that one is held (1 or 6), if it
were replaced by the other, then there are two ways for this state to be obtained.
When i = 0, there are no 1’s or 6’s, therefore this component does not change the
total count.

o #middle faces = 4P; = ﬁ When j = 0, there are no middle faces and therefore

% = 1 way to arrange zero faces. When j = 1, there is only one middle face
represented and there are % = 4 ways for this to occur. When j = 2, there are
two middle faces represented, with % =4 x 3 ways for this to occur. When j =3,
there are three middle faces represented, with % =4 x 3 x 2 ways for this to occur.
When j = 4, all four middle faces are represented, with gii =4 x3x2x1 ways

for this to occur.

e # arrangements = the sum of the terms expressing the different ways to allocate
the five dice such that i ends and j middles are obtained.

The following principles were used to obtain the # arrangements terms:
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1. Let e be the number of dice allocated for the ends and m be the number of dice
allocated for the middles. Obtain all combinations of (e,m) (placing the largest
numbers at left, for readability).

2. Within e, obtain all combinations of i’s (placing the largest numbers at left).
Within m, obtain all combinations of j’s (placing the largest numbers at left).

3. For each combination within principle 2, obtain a multinomial coefficient of the
following form,

< 5 ) .
el,eq, My, m3,mq, Ms etleg!my msz\my!ms!

Each multinomial coefficient gives the number of ways the 5 dice can be grouped
into the 6 faces with the number of elements, ey, eg, m>, m3,my, or ms in each class
and e + eg + my +m3 +my +ms = 5, (at least one of ey, eq, my, m3,my, Or ms is
always zero).

4. Ife; = e¢ = 1, divide the multinomial coefficient by 2!. If exactly two of my,m3,my,
or ms are 1’s or 2’s, divide by 2!. If exactly three of my,m3,m4, or ms are 1’s, di-
vide by 3!. The division removes double-counting. When e; = 1 and eg = 1 both
a 1 and a 6 have been rolled, which has been accounted for in the multinomial
coefficient and “# end faces” (Equation (7)). The reasoning is similar for division
on account of repeated m’s.

To illustrate the above principles, we will explain our calculations for P (X)3), the prob-
ability of rolling one end and three middles on the first roll. To find N (X;3) we seek the
three components from Equation (7). First, we have “# end faces” = 2, since Xj3 has
i = 1, meaning there is at least one 1 or 6. Second, we have “# middle faces” =4 x 3 x 2,
since X13 has j = 3, meaning there are three unique middle faces, possibly one middle
pair. Third, to find the number of arrangements, we use the following four principles.

1. There could be either 1 end and 4 middles, (e,m) = (1,4) or 2 ends and 3 middles,
(e,m) = (2,3).

2. If (e,m) = (1,4), then since i = 1 = ¢, e; = 1 and e¢g = 0. Since m = 4, choose
my=2,my=1,andmy = 1.
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3. There is only one possible multinomial coefficient for this combination,

5 51
(1,0,2,1,1,0> = =%

4. Since m3 = my = 1, divide the multinomial coefficient by 2!
Next, we return to principle 1 to consider the case (e,m) = (2,3) :

2. If (e,m) = (2,3), then since i = | = e, there are two possibilities, either (e,eq) =
(2,0) or (1,1). Since m = 3, we must have my = 1, m3 =1, and my = 1.

3. There are two possible multinomial coefficients:

5 5
<2,o,1,1,1,o) =60 and (1,1,1,1,1,0> = 120.

4. Divide both by 3! since m, = m3 = myq = 1, and divide the second by 2 as well
since e] = e = 1.

Combining these results gives

# arrangements =@ + @ + @ =
21 31 312!
Therefore, using Equation (7), the probability of obtaining X;3 on the first roll is
N(X13) . 2 X (432) x50
6> 7776
The application of these principles for each of the nine cases can be found in the sup-

50.

P(X3) = = 0.3086.

plement (YahtzeeRCalculations.R) where the following probabilities are obtained:

Table 5. The nine unconditional probabilities for a large straight
Xoi ‘ Xoz ‘ Xo3 ‘ Xo4 ‘ Xio ‘ X ‘ Xi2 ‘ Xi3 ‘ Xi4
0005 | .0231 | .0772 | .0309 | .0041 | .1080 | 4167 | .3086 | .0309

The calculations for the conditional probabilities are analogous to the unconditional.
The probability of moving to state X;; from state X}, is given by

N (Xijl Xke)

19



Journal of Statistics Education, Volume 19, Number 1 (2011)

where d is the number of dice rolled, 1 < d < 5. The number of ways for the event
to occur N (Xl- 5 \ng) is also given by Equation (7), with components computed analo-
gously. Conditional probabilities may be influenced by two further complexities. First,
there may be d < 5 dice. Second, the way to count “# middle faces” changes to account
for the previously held dice, requiring the addition of principle 5, as follows.

5. If'there are some previously held middle dice and some newly rolled middle dice,
then the term should be multiplied by two, to account for the case where the two
possibilities switch.

To illustrate the above principles, we will explain our calculations for P (Xp3|Xp2), the
probability of starting with two middles and obtaining one more middle on the next roll.
To find N (Xo3]|Xo2) we seek the three components from Equation (7). Starting with the
number of arrangements, we use the four principles from before, plus the additional
principle 5.

1. & 2. Since there are no ends, the three middles could either be all three new, two new
and one previously held, or one new and two previously held.

3. The multinomial coefficients for the above three cases, respectively, are

3 3 3
<0,0,0,0,3,0)_1’ (0,0,2,0,1,0)_3’ and <o,o,1,1,1,o)_6'

4. The first and second cases have no divisors, but the third has a divisor of 2! be-
cause two of the middles were previously held.

5. The first and second cases have a multiplier of 2.

Returning to the faces, “# end faces” = 1, since Xp3 has i = 0, meaning there are no
I’s or 6’s. The “# middle faces” depends upon the case from principle (3). Case one
is 1-2 because there is one way to obtain (my,m3) = (0,0) and two ways to obtain
(m4 ms) =(3,0). Case two is 2 -2 because there are two ways to obtain (m;,m3) = (2,0)
and two ways to obtain (m4 ms) = (1,0). Case three is 1 -2 because there is one way
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to obtain (my,m3) = (1,1) and two ways to obtain (m4 ms) = (1,0). Combining these
results gives

N(Xo3lXo2) = 1x (1-2) x 1+ 1x (2:2) x (3-2)+ 1 x (1-2) x (6-1) = 38

which implies
N (Xo3 | X0 38
P (Xo3|X02) = ( 63| ) =206 = 0.1760.

The complete enumeration of all cases is given in the supplement (YahtzeeRCalcula-
tions.R). The transition probability matrix is

Xor Xoo Xoz Xoa Xio X1 X2 Xi3 X
Xo1 .001 .035 .116 .046 O .062 .370 .333 .037

Xo2 0 .037 .176 .083 O 0 .259 .389 .056
Xo3 0 0 .250 .194 O 0 0 444 111
Plarge swaight = Xoa 0 0 0 .667 0 0 0 0 .333
Xio 0 0 0 0 .012 .201 .509 .259 .019
X1 0 0 0 0 0 .125 .514 .333 .028
X12 0 0 0 0 0 0 .444 .500 .056
X13 0 0 0 0 0 0 0 .833 .167
X4 0 0 0 0 0 0 0 0 1

Let po denote the unconditional probabilities given in Table 5 which, unlike the 5K case,
is not the first row of Barge straight- The unconditionals are not given by the first row of
the conditional probabilities because there is no Xy case. After the first roll, one of the
nine states, Xpi,...,X14 will be entered. The solution of interest, P (large straight), is
the ninth element of the vector,

P x| x| x| x| x| x| x| X
large straight = (000 \ .0000 \ .0060 \ 0297 \ .0000 \ 0018 \ 1183 \ 5951 \ 2491

The superscript () indicates the event is after the third roll. Thus, P (large straight) =
0.2491. That is, there is about a 25% chance of obtaining a large straight by the third
roll, when holding for it from the first roll.
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4.6 1’s (Aces)

The preceding solutions were all technical details of the first and longest part of the
project. The second part was to propose and analyze a discrete random variable per-
taining to Yahtzee. The third part was to calculate the expectation and variance of 1’s,
2’s,3’s,4’s, 5’s, or 6’s. In a burst of unforeseen creativity, most groups tended to com-
bine their work for parts two and three. Having spent the majority of their time on the
first part, all groups made simplifying assumptions. There were two primary approaches
taken. Most groups assumed that nothing of interest was obtained on the first two rolls,
and so all five dice were rolled on the third roll with the intention of holding 1’s. For
dicei=1,...,5,let X; =1 ifa 1l is rolled and 0 otherwise. Then, since X; is a Bernoulli
random variable with p = 1/6, they obtained E (X;) = 1/6 and V (X;) = 5/36. Then they
summed the five independent dice, E (ZleX,) =5/6and V (Z?:le) =25/36. Some

observed that the sum was binomial, S = Y>_; X; ~ binomial (n = 5, p = 1/6) and found
expectation and variance from the binomial formulas E (S) =np and V (S) =np (1 — p).
A minority did not want to assume a single roll, yet they were unable to obtain the gen-
eral conditional expectation. Their answers were a hybrid of technical expectation and
simplified assumption. They reasoned that since 5/6 was expected on the first roll, they
would assume one die was held and roll four dice on the second. Since 4/6 were ex-
pected on the second roll, they would assume one more die was held. On the third roll,
three dice rolled have expectation 3/6. They concluded that “about two or three” of
the same face would occur in three rolls, giving a score of two to three times the face
selected.

5. Simulations

Our team built scripts simulating six different Yahtzee “aims” satisfying the following
categories: three-of-a-kind (3K), four-of-a-kind (4K), yahtzee (5K), full house, large
straight, small straight, and aces. The simulations followed the Yahtzee rules given in
the theoretical calculations, for comparability. The simulation always makes the move
a perfect player would make. Each simulation produced results from the average of n
turns where 7 is specified by the user. The aces simulation held as many aces as possi-
ble each turn and calculated the mean number of aces. All other simulations calculated
probabilities of success. The simulations were written in R (http://www.r-project.org).
The R code is available in the supplement (Yahtzee sim.R). It was constructed so as
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to be easy to use and commented in order to be readable. A brief user’s manual is
included in the supplementary material which describes the functions and their use
(Yahtzee_Simulations_Manual.rtf). For example, the procedure for simulating the prob-
ability for finding a large straight over 100 runs would be found, after copying the code
into the R interface, by typing large.straight(100) into the R command line. For this
article, each simulation was run n = 10° times and the results match the theoretical cal-
culations to three or more decimal places. The simulation speeds vary, but runs of size
n = 10* usually finished in less than 15 seconds.

6. Conclusion

The project was assigned on the first day of the course. After a couple of weeks of
covering the usual probability calculations (including combinatorics, the product rule,
and conditional probability) students realized we would not go deeper into probabil-
ity calculations and began work on part one. They quickly hit a wall of difficulty. I let
them struggle with the difficulty of the individual calculations and the magnitude of
the project for a few weeks. Once themes began to emerge in office hour questions, I
presented the 5K solution to the class on the board at about the fifth week. No hand-
outs were provided, so students had to record the material and understand it. From a
technical perspective, the students benefitted most from seeing answers for the hardest
probability calculations, for example, P (X;), and the way to calculate the union of the
event paths by multiplying the conditional probabilities. With respect to using multiple
methods, however, the students saw the power and value of simulation when I shared
with them how I had an error in my technical calculation that was not detected until I
investigated the divergence between my simulated and theoretical results. Because this
was their first exposure to R and I did not have time to cover as much R programming
in class as I intended, I provided my full simulation code to the students (yahtzee only).
This downgraded the programming part of the project from creation to modification.
If I did not do this, the result may have been disaster. However, since the students had
programming experience and worked in groups, those taking the path of least resistance
were able to perform the modifications to my code and get through that part without
much help. At the other end of the spectrum, one student went so deep into R and cod-
ing that he became a co-author on this article. Providing the code eased tensions in the
class over the project, got them through the most difficult part, and the rest proceeded
rather smoothly.
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The climax came on the due date, which was devoted entirely to discussion. I opened
by asking students to raise their hands and ask whatever questions that were on their
minds in relation to the project. To help create an inquisitive atmosphere, I wrote all
questions down on the board before responding. The students were hungry for answers
and the class atmosphere that day was one of those rare mixes of pin-drop quiet and
deep inquisitiveness with willingness to ask at the right time. Because of my stated
intention to bridge the technical work into application experience, and the seeds I had
sown during the semester, the students clearly saw beyond the immediate project to the
general principles. Some of their questions, with a combination of my answers (or the
answers I wish I would have given) were:

1. How do you know when you get it right?

(a) Theory—For P (X;|X) I calculated cases j = 2,3,4,5 and believed they
were all correct. Later, however, it occurred to me that the cases form a
complete probability distribution. Since the probabilities did not sum to one,
I had made an error.

(b) Simulation—As mentioned previously, I reminded them of the value of us-
ing simulation to check your theory, and vice versa.

(c¢) Research—When the question comes, this is the time to check the literature
for what has been done before.

(d) There may be more than one “right” answer—some students defined X3 to
include X; and X5, whereas others kept them distinct. Defining things well
is critical.

2. How do you know when to stop? In any significant project in industry, or teaching,
it is critical to determine the deadline and amount of time available for the work.
Then, divide the project into sections and construct a timetable for how to allocate
the time by section. As you go, there are at least two limiting methods.

(a) Reduce/simplify the problem (e.g., at the outset assume we seek 5K for the
turn, or when holding for aces assume we roll all five dice on the third roll).

(b) Accept approximate solutions, instead of exact, where appropriate (e.g., ig-
nore low probability events—the first time through I ignored the case of
moving from X, to X3 due to three dice rolled being 3K and different from
the first pair).
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3. Are there other random variables, or something, that could be used to solve these
kinds of problems? 1 sketched the Markov chain solution to 5K, to which there
were many smiles and approving nods. (If I had been more prepared, I would
have been able to teach the essence of discrete state Markov chains right there in
10 minutes because they had just painstakingly worked out three cases by brute
force.) I also mentioned that probability generating functions could be used to
find sums of uniform random variables.

In conclusion, I have attempted to describe a probability project that resulted in my
students successfully integrating multiple topics using multiple problem-solving meth-
ods over an extended period of time in a group setting. My students, the majority of
which had no prior exposure to applied mathematics or statistics, were given a taste of
a project requiring important skills which are routine in industry. This was a benchmark
experience, and will provide a basis for a more informed decision about career paths in
applied mathematics/statistics. It has been my goal to provide the reader with a sense of
its excitement and a taste of its fruit, as well as enough content to allow them to adapt it
for their own purposes without too much work.

If I were to run the project again, I would make the following changes. (1) Trim back
the material in the course to provide more time to introduce R. In this way, the students
would play a greater role in the R coding and more effectively begin learning this valu-
able skill. (2) Be more intentional about the examples used when covering conditional
probability, and consider inserting some Yahtzee examples in lecture. (3) Be more ex-
plicit about the format of the write-up (I was very general, see Yahtzee Project.doc).
Without standardization, it took longer to grade the papers, and some details I wanted
to see were missing because they were not specified. For example, [ wanted an intro-
duction and a conclusion with the project parts in the middle as sections, but not all did
this. (4) For the first time through, the project was overly ambitious. It took a lot of time
on my part to do it ahead and help students, and it took them a long time to complete
(reports were 10—15+ hrs., which does not seem as bad as some complained). Next time
I would give a big introduction to the project, being very explicit about the goals, and
the expected timeline. (5) On the project due date, I would run the Q&A exactly the
same, except I would come prepared with a handout introducing the basics of Markov
chains and have the Markov chain solution to the yahtzee case ready for demonstration
on R. Memorable lessons would be achieved with this feature as the climax of the day.
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