

Using Interactive Graphics to Teach Multivariate Data Analysis to Psychology Students

[Pedro M. Valero-Mora](#)

Universitat de València (Spain)

[Rubén D. Ledesma](#)

Universidad Nacional de Mar del Plata (Argentina)

Journal of Statistics Education Volume 19, Number 1 (2011),

www.amstat.org/publications/jse/v19n1/valero-mora.pdf

Copyright © 2011 by Pedro M. Valero-Mora and Rubén D. Ledesma all rights reserved. This text may be freely shared among individuals, but it may not be republished in any medium without express written consent from the authors and advance notification of the editor.

Key Words: Interactive graphics; Multivariate data; Parallel boxplots; Principal components; Cluster analysis.

Abstract

This paper discusses the use of interactive graphics to teach multivariate data analysis to Psychology students. Three techniques are explored through separate activities: parallel coordinates/boxplots; principal components/exploratory factor analysis; and cluster analysis. With interactive graphics, students may perform important parts of the analysis “by hand,” using techniques such as pointing at, selecting and changing the colors of the points/observations. Our experience demonstrates that this approach is very useful when teaching an intermediate/advanced course on multivariate data analysis to students of Psychology, who tend to have low to moderate proficiency in Mathematics.

1. Introduction

Teaching multivariate data analysis to Psychology students is an interesting challenge. On the one hand, these students generally do not have a strong grounding in Statistics or Mathematics, and they usually have a rather unenthusiastic attitude towards these subjects. On the other hand, the objectives of some multivariate techniques, such as factor analysis or cluster analysis, are

very closely tied to concepts they learn as students of Psychology; consequently, they are able to appreciate the utility of these techniques very quickly. For example, they are familiar with theories of factorial intelligence and personality, and they readily understand the concept of clustering individuals in different groups according to symptoms, characteristics or traits. Based on our experience, we recommend that courses on multivariate statistics for Psychology students first review this knowledge and then introduce the statistical or mathematical aspects later in order to keep students highly motivated.

Interactive and dynamic graphics are excellent tools for introducing multivariate data analysis ([Cook, 2009](#)) for they allow students to apply these techniques entirely or partially in a graphic/interactive way, providing insights into the procedures that do not stem easily from the formulae. Dynamic graphics are special, computer-based statistical graphics that change in response to a direct user manipulation or other data-analysis action/event, such as changes in other related plots-windows ([Theus and Urbanek, 2009](#); [Young, Valero-Mora, and Friendly, 2006](#)). Because they are difficult to define in words, this paper includes several videos that show dynamic graphics in action. The videos show how interactive graphics allow the students to visualize multivariate data and then perform activities that are very natural for them. Since the math involved is minimal, students can begin playing with the data immediately, identifying outliers and specific observations they are curious about, or clustering groups of observations with similar profiles across variables. Once they have experienced carrying out these activities “by hand” it is easy to introduce the mathematical concepts behind the graphics. Then, a discussion of the differences between the results obtained interacting with the graphics and the formal mathematical method can provide a deeper insight into the algorithms, their limitations, and the way of solving the analytical problems that may arise during the analysis. Last but not least, as the interpretation of the outputs of multivariate techniques is sometimes rather complicated, interactive graphics may also help by providing a succinct view of the different parts of the output.

The aim of this paper is to demonstrate how interactive and dynamic statistical graphics can be used to teach a course on introductory multivariate statistics to Psychology students. Note that, although we use ViSta “The Visual Statistics System” ([Young et al., 2006](#)) the same activities can be performed with other statistics software. ViSta is multivariate visualization and data analysis software that we actively contribute to in terms of development and maintenance; we also use ViSta in our statistics courses. These are the main reasons why we use ViSta in this paper. However, we will emphasize the activities and not our own software. Further, in section 5, we provide a review of other statistics programs with dynamic graphics capabilities.

This paper is organized as follows: first, we will describe the profile of the typical student we see in our multivariate data analysis courses; second, we will introduce three activities to illustrate the use of interactive graphics in the classroom; finally, we will provide a quick introduction to ViSta and a short account of other programs that provide interactive graphics.

2. Our Students

Teaching statistics in Psychology is always a challenge in terms of finding appropriate strategies ([Wiberg, 2009](#)). It is worth noting that students of Psychology enrolled in a multivariate data analysis course are special in several respects. First of all, as these courses are generally optional, the unmotivated students simply do not enroll; second, the students that do enroll usually have an approximate idea of the application of statistics to psychology (as they have already been exposed to research applied to the latter that is based on the former); third, courses on multivariate statistics are taken in the final years of the program; and fourth, enrolled students have already taken exams on statistics in the past (for example, the exam following the introductory course that is usually a prerequisite for the advanced course) and are, therefore, not as apprehensive of the subject matter as students tend to be in an introductory statistics course. In summary, our students possess a number of characteristics that contribute positively to the learning process.

However, these students also possess attributes that, though not entirely negative, need to be taken into consideration as well. For instance, they often do not have a deep understanding of mathematics and often they have been taught that they do not really need it. Indeed, if strategies such as those reviewed by [Wiberg \(2009\)](#) (e.g., to emphasize data and concepts at the expense of theory, to have hands-on problems or real life problems, and to use real data and focus on the students' learning instead of the lecturing) have been used to teach them introductory courses on statistics in the past, they will not easily accept that a new strategy will be used now. Fulfilling this expectation can be a more difficult challenge in an advanced course than in an introductory one, as it may become rather complicated to convey the concepts of multivariate statistics without resorting to matrix operations or probability theory.

In our experience, the activities that follow have proven useful in the situation described above. Going through them, students obtain an intuitive approximation of the techniques involved and can interact with data or results to understand the multivariate problem. Actually, in some cases, they can even try to solve the problem manually, arriving at a solution that is similar to the one that could be obtained algorithmically. Comparisons between the results obtained manually and mathematically are also of interest, as they may help students understand the complexities of the problem and how to avoid possible pitfalls. Finally, as the interpretation of the results is not as straightforward as it is for other situations, the interactive graphics presented here can also be invaluable in the final part of the multivariate analysis.

3. Software Downloads

We encourage the reader to install the ViSta software on his/her computer. Instructions for software installation are included in the [Appendix](#).

Each activity described in Section 4 has a corresponding video that illustrates use of the ViSta software in the data analysis. You may download these videos from JSE by clicking on the links below. These same videos are also linked later in the paper as Movie 1, Movie 2, and Movie 3. Each download may take up to five minutes.

Section 4.1 Parallel Lines/Boxplots -

<http://www.amstat.org/publications/jse/v19n1/BoxplotswithSound.avi>

Section 4.2 Principal Component Analysis -

<http://www.amstat.org/publications/jse/v19n1/PCAwithSound.avi>

Section 4.3 Interactive Cluster Analysis -

<http://www.amstat.org/publications/jse/v19n1/ClusterwithSound.avi>

4. Three Activities for Exploring Multivariate Techniques

We will discuss three activities in this section: parallel lines/boxplots as a way of exploring many variables simultaneously in a direct, intuitive way; principal component analysis using interactive graphics; and cluster analysis “by hand.” The reason we have chosen these activities is because they have proven to be engaging activities for our students and because, after a short introduction, students can work autonomously and arrive at conclusions by themselves.

4.1 Parallel Lines/boxplots

4.1.1 Pedagogical Purpose

In this first activity, we show how dynamic graphics can be used to introduce students to a multivariate data analysis problem. The activity consists of using an interactive parallel boxplot to explore a multivariate dataset. The objectives of this activity are for students to interact with raw multivariate data, familiarize themselves with the data’s typical structure, and explore the data in various ways. As a result of this interaction/exploration, we expect that students will learn to compare multivariate profiles, detect outliers and clusters in the data, form general hypotheses about the relationships among variables, etc.

4.1.2 Sample Data and Data-Analysis Activity

For this activity, we use a sample set of multivariate data called "Crime." The data include the rates per 100,000 people of seven major classifications of crime in each of the 50 U.S. states from 1980 ([Young and Sarle, 1982](#)). When you download ViSta this dataset is available at the data/princomp/ directory; see the file crime.vdf. In this data file, rates are quantitative variables and states are the “observations.” With this data, we propose an activity that consists of: (1) generating a parallel box-plot with the sample data; (2) introducing students to the information that the dynamic box-plot displays; and (3) exploring the data in different ways by using the dynamic box-plot’s capabilities, such as identifying outliers, specific cases that meet certain criteria (e.g., cases above a variable’s average), groups of states with similar crime profiles, relationships among the observed rates, etc.

4.1.3 The Dynamic Parallel Boxplot in Action

Parallel boxplots are basically parallel coordinate plots ([Inselberg, 1985](#); [Wegman and Luo, 1997](#)) with boxplots added. Parallel coordinate plots represent axes as mutually parallel instead of mutually perpendicular as in Cartesian coordinates. They represent cases as lines connecting the (standardized) values of the (standardized) observations across the coordinates. These plots have many interesting properties, the most important of which is the ability to extend them to an arbitrary number of dimensions almost seamlessly. On the other hand, one of their limitations is that they can get cluttered very quickly, making it difficult to examine individual observations or patterns. This clutter can be reduced with the interactive version of the plot. In interactive parallel coordinate plots, the user can pinpoint individual observations, or groups of them, using the mouse, and thus avoid having too many lines displayed at the same time.

[Figure 1](#) shows an example of a dynamic box-plot and illustrates the type of interpretations students can make right away. In the variable Robbery, for instance, an observation stands out quite dramatically; therefore, the user can select this observation in order to see its profile along with the profile of other observations, as well as the name of the state. The observation pertains to New York and we see that this was a state with levels of crime above the third quartile in all of the given categories except Larceny and Rape. Auto-Theft was also very common in this state, with only three states above New York in this crime category. Normalized Z-scores are used in the y-axis.



Figure 1: Parallel boxplots for the Crime data. New York has been selected.

An additional example of the explorations that students might get into is displayed in [Figure 2](#). Here we see the comparison between the profiles of two observations across the variables. In this case, the states with the highest rates of Auto-thefts have been selected and we see that the

profiles of the two states are rather similar, except in the categories of Rape, Robbery and Larceny.

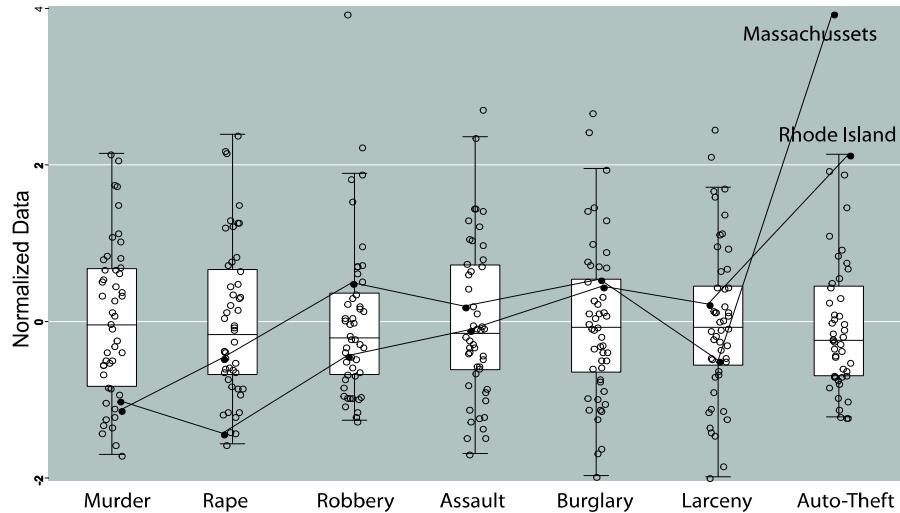
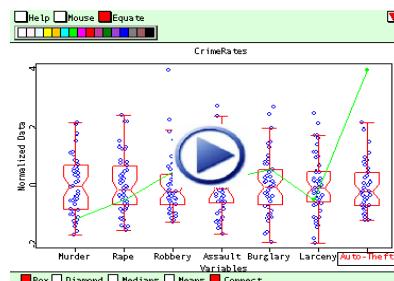


Figure 2: Parallel boxplots for the Crime data. The two states with highest Auto-Theft rates have been selected.

Finally, the movie *BoxplotswithSound* provides a more effective demonstration of the power of the dynamic parallel boxplot method as a means of introducing students to multivariate data exploration tasks. The movie shows the various ways students can interact with the graphic (selecting, brushing, labeling, etc.) to explore the data.



Movie 1: Click above to view the parallel boxplots in action.

4.2 Principal Component Analysis (PCA)

4.2.1 Pedagogical Purpose

One of the most common analyses carried out in Psychology involves deriving a number of factors underlying a set of indicators or variables, such as items in a personality questionnaire or

aptitude test. Personality traits or intelligence factors found in this way are then examined to see if they correlate with other variables, such as academic performance, work aptitude, personal skills and so forth. However, even though Psychology students have plenty of exposure to the goals and applications of PCA and factor analysis, they are rarely taught the mathematical details that lie behind them. As [Yu, Andrews, Winograd, Jannasch-Pennell, and DiGangi \(2002\)](#) stated, teaching factor analysis is often a big challenge, but certain graphic representations, such as the biplot ([Gabriel, 1971](#)), can help students understand the underlying concepts. Indeed, we believe that interactive biplots are even more helpful. The purpose of this second activity is to illustrate how dynamic graphics can be used to support the teaching of PCA. We hope that, through interaction with appropriate graphics, students will be able to better understand the concepts involved in the PCA, as well as the meaning of the resulting solution.

4.2.2 Sample Data and Data-Analysis Activity

For this activity, we use the same Crime dataset introduced previously. After exploring the data with the boxplots and being introduced to the fundamentals of the PCA, students should be able to apply and understand the result of a PCA as applied to the sample data. We propose an activity consisting of: (1) applying a PCA to the sample data; (2) obtaining and interpreting a text-based report of the PCA output; and (3) exploring the PCA output by using specific dynamic graphics (e.g., biplot, interactive scree-plot, scatterplot matrix of raw-data, parallel plot of object scores and variables loading, etc.).

4.2.3 Dynamic Graphics to Visualize PCA in Action

There are several graphic techniques than can be used to display PCA results. ViSta provides some of them in a dynamic and interactive manner, thereby making the visualization of a PCA more effective than if just static graphics were used. We illustrate some of the possibilities of these graphics via an example that includes two linked plots: a scatter plot matrix and a biplot.

[Figure 3](#) shows a scatterplot matrix of the seven categories of crimes linked with a biplot of the first two principal components of the data. The biplot shows the vectors of the variables in red. We can interpret the first principal component as an indicator of criminality, where states with higher criminality are at the right of the plot and states with lower criminality are at the left. Also we see that vectors for crimes against individuals—Murder, Assault and Rape—point downwards, whereas vectors for crimes against property—mainly Auto theft and Larceny, but also Burglary—point upwards. Therefore, states on the upper part of the plot (i.e. with positive values in the second principal component) have an abundance of less violent crimes than states with negative values in the same principal component.

Selecting points on the biplot activates the corresponding points for the observations in the scatterplot matrix. This can be a very engaging activity for students, as they may use this exploration of the data to understand the meaning of the principal components. For example, the points in green are those with negative values in the first principal component, and are located more or less in the center of the second principal component. We see that these points

correspond to states with low values in every category of criminality. In this way, students have direct information of the correspondence between raw and transformed scores.

The movie PCAwithSound.avi provides a clearer demonstration of how these dynamic graphics work.

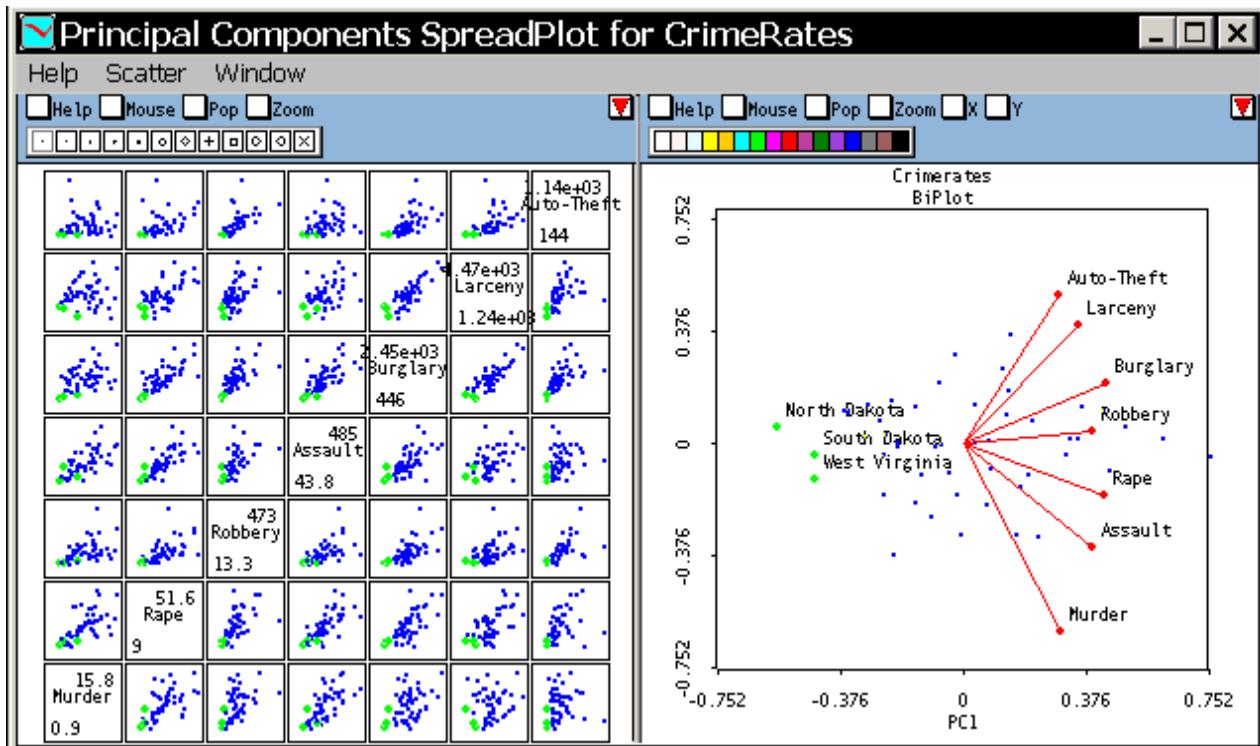
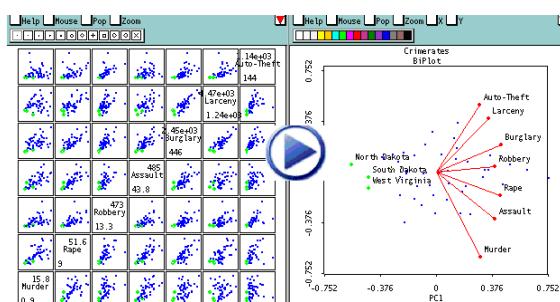


Figure 3: A scatterplot matrix of raw data from the Crime sample and a linked biplot of the principal components of the data.



Movie 2: Click above to view the PCA graphic in action.

4.3 Interactive Cluster Analysis

4.3.1 Pedagogical Purpose

A very effective demonstration for students is to show them how to perform a (sort of) multivariate analysis interactively. In the past, this idea has been applied to regression models ([Anderson and Dayton, 1995](#); [Henderson and Velleman, 1981](#)) and to principal components ([Velleman, 1995](#)). Here, we will describe how to carry out a cluster analysis interactively on a graphic. We believe that dynamic graphics are a good way to introduce students to the basics of clustering. After interacting with graphics and attempting “manual” classifications, students may be better disposed to understanding and learning about objective classification methods, such as k-means. Following this line of thought, the pedagogical objective of this activity is to: familiarize students with classification methods; give them a better understanding of the basic ideas involved; and make them realize the need for objective classification methods.

4.3.2 Sample Data and Data-Analysis Activity

For this activity, we use the Dermatology dataset discussed in [Guvenir, Demiroz and Ilter \(1998\)](#). The data are observations of 34 variables obtained from 366 dermatology patients, and is available in ViSta at data/princomp; see the file PCA_dermatology.vdf. The variables are the first five principal components of the ratings of the severity of the symptoms of patients with a dermatological disease. Using this data, we propose an activity that consists of: (a) exploring and identifying natural clusters or empirical observations in the graphics; and (b) comparing the “manual” classification results with the k-means classification method.

4.3.3 Clustering and Dynamic Graphics in Action

A scatterplot matrix of the principal components of the original data matrix can be seen in [Figure 4](#). Interacting with this plot, students may identify and select the clusters. Thus, the PC1-PC2 cell in the plot displays three separate bubbles of values that might be initially identified. Then, PC1-PC3 shows a new group that sticks out of one of the previously identified groups. Similar steps can be performed with the PC1-PC4 and PC1-PC5 plots, until students end up with five different clusters. The final plot will display the five groups projected in the first two principal components as seen on the graphic to the left in [Figure 6](#). This plot features mainly three groups, of which one of them is further sub-divided in three groups. The movie ClusterwithSound demonstrates how to carry out this process in ViSta.

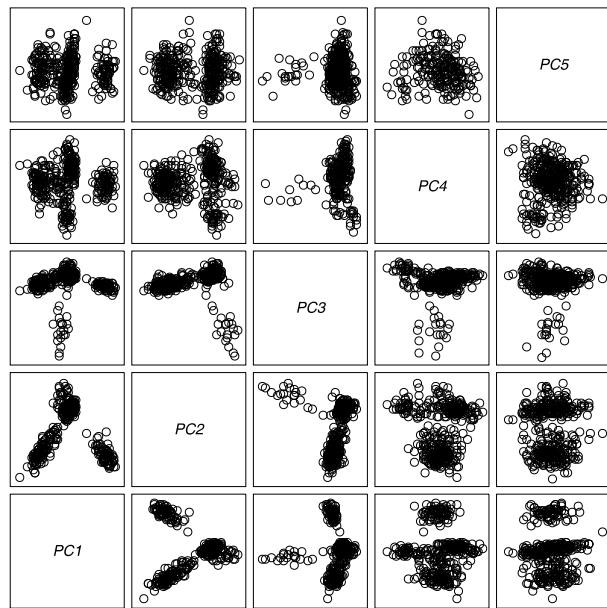


Figure 4: Scatterplot matrix for the first five principal components in the Dermatology data.

A good way to see the result in the cluster analysis is by using a parallel coordinates plot. [Figure 5](#) shows such a plot. In it, we see the five clusters previously identified along the first five principal components. Detailed analysis of this figure allows us to see, for example, that the brown points are mainly concentrated on the high values of the first principal component but also that they are mixed with the pink points in the other components. On the other hand, the red/black/yellow clusters that overlap considerably in the first principal component are more clearly separated in the third, fourth and fifth principal components. Red stands out in PC3, and black and yellow in PC4. This plot also enables us to identify outlying values, such as the one indicated by the arrow.

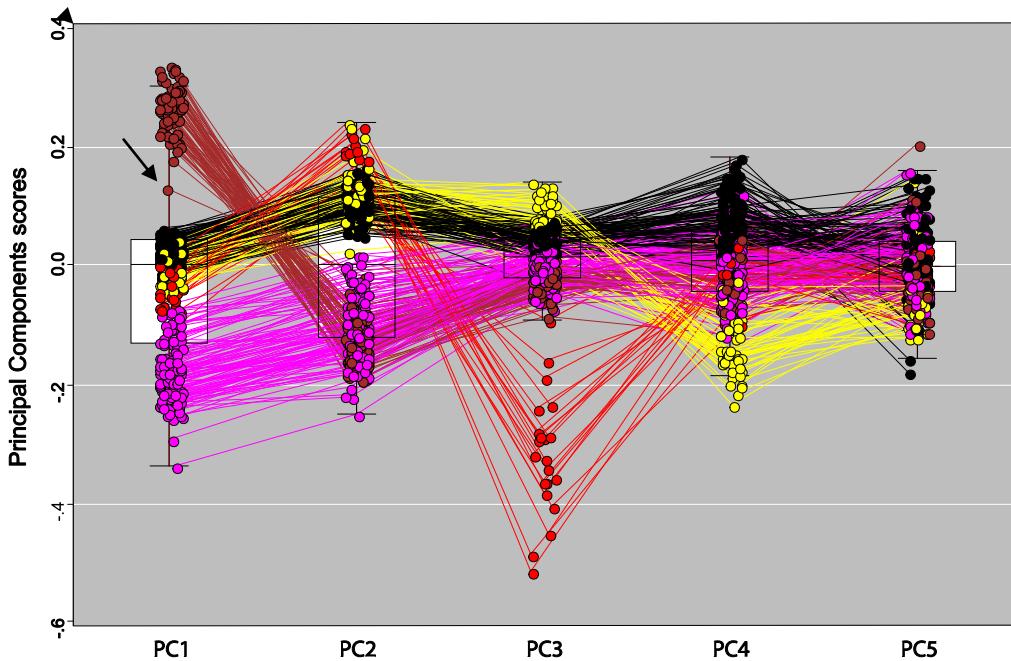


Figure 5: Parallel coordinates boxplot of the 5 first Principal Components in the Dermatology dataset

One final activity that can be performed is comparing the classification obtained manually with what is obtained with a statistical algorithm. For this purpose, we used the simple K-means algorithm on the first five principal components displayed before. Results are shown on the graphic to the right in [Figure 6](#); apart from the computer algorithm having selected different colors for the groups, it can be observed that the differences with the graphic to the left in [Figure 6](#) are minimal. Discovering that they can obtain results similar to those obtained with a mathematical algorithm is very rewarding for students. Last but not least, discussion of the differences between the solutions is a good way of exploring how the method works. In this case, for example, there is an observation that has been allocated to different groups in the graphic to the left of [Figure 6](#) and the graphic to the right of [Figure 6](#); consequently, it may be interesting to examine it in detail.

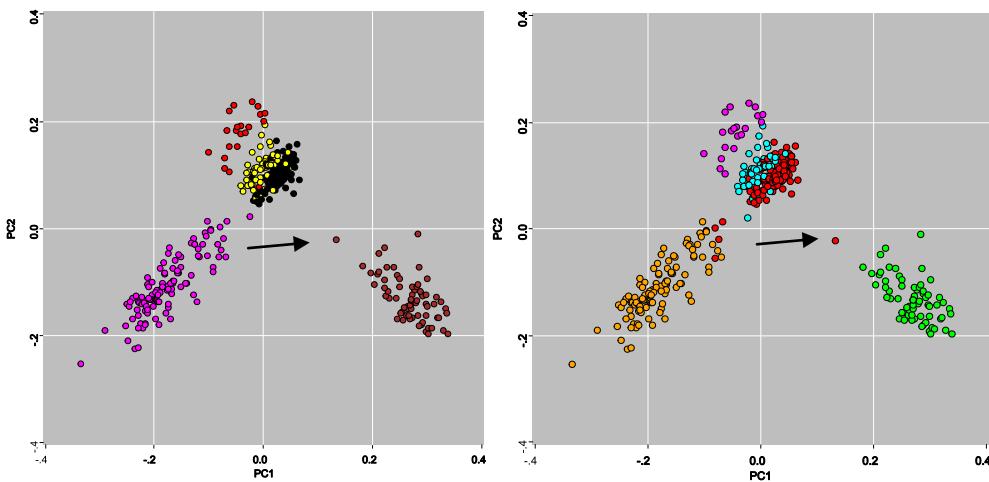
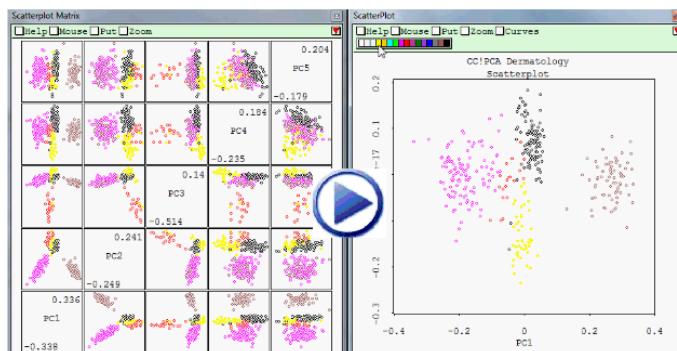


Figure 6: Results of clustering by hand (left) and with the K-means algorithm (right) for the Dermatology data.



Movie 3: Click above to view a movie of the clustering activity.

5. Software for Interactive Graphics

In our classes, we use the software ViSta ([Young et al., 2006](#)) for reasons discussed below. However, there are other interactive graphics programs that readers may wish to consider when applying the ideas discussed in this paper. In this section, we will list the reasons why we find ViSta appropriate for these activities, and then provide a short account of other interesting software—commercial and non-commercial—that could be employed for carrying out the activities described herein.

We use ViSta in our introductory multivariate data analysis course for the following reasons:

- ViSta is free, and so we do not have to petition our institution to acquire the software.
- Further, it is easy to install, and so we do not have to seek the assistance of IT staff; all that is required to start using ViSta is to simply download and decompress the file.

- Students can use ViSta both at home and at the university, as opposed to some commercial programs that provide licenses that are not valid outside the university campus, forcing students to use on-campus computers at all times.
- ViSta has a GUI interface that is relatively standard and familiar to students (menus, buttons, dialog boxes, etc.).
- ViSta is visually oriented; many of the techniques provide animations or visual representations that help students interpret the results.
- ViSta graphics are interactive, linked, etc. ([Young et al., 2006](#); [Cook and Swayne, 2007](#)) so that it is possible to explore the results of the analysis in depth.
- ViSta includes the techniques most commonly discussed in multivariate statistics courses oriented to Psychology students, namely principal components and factor analysis, multidimensional scaling, cluster analysis, correspondence analysis, etc. Also, it includes a module for psychometric analysis, which is not found in other data visualization programs.
- Last but not least, we are involved in ViSta's development and maintenance, so we can tune up specific features to meet our needs and we can also address requests from other users of the software.

We sometimes hear concerns about whether there will be support for ViSta in the foreseeable future. At present, ViSta runs on the latest three operating systems for Windows (XP, Vista and 7). This guarantees that the current version of ViSta may be used for several years before a significant overhaul of the current hardware/software combination arrives. However, despite our stated preference for ViSta, the figures in this paper are software-neutral (not screenshots) in all cases but one, as we wish to make it clear that the specific activities described herein can also be performed with programs other than ViSta. A list of some of the other programs that could be used instead of ViSta is provided below.

- RGobi (<http://www.ggobi.org/rggobi/>): This is the most recent version of the software previously called XGobi/GGobi. This version is connected to the R statistical environment. This means that users have access to all of the power of R for performing statistical analysis and can resort to RGobi for visualization. [Cook and Swayne \(2007\)](#) is an outstanding reference source on this software and on the applications of interactive dynamic graphics in statistics.
- Mondrian (<http://stats.math.uni-augsburg.de/Mondrian/>): Mondrian is an excellent (and free) program for interactive plots. It features linked boxplots, scatterplots, histograms and more. It is also very strong in graphics for categorical data such as barcharts and mosaic plots. As in RGobi, there is a connection between Mondrian and R, so it is possible to compute analysis and results in R and visualize them in Mondrian. iPlots (<http://rosuda.org/iplots/>) provides

high interaction plots similar to those of Mondrian, but embedded in R, as a complement to the standard plots in this statistical environment.

- DataDesk (<http://www.datadesk.com/>) is a commercial program that provides a direct manipulation interface, dynamic interactive graphics and linked plots in a very responsive environment. DataDesk has been around since the 80s; it was ahead of its time in many features then and has stood the test of time wonderfully. Additionally, its authors have been involved in writing highly successful introductory statistics handbooks in recent years, including a reduced version of DataDesk, so many students may already have access to this program.
- Gapminder (<http://www.gapminder.org/>): This is a website that provides several interactive dynamic graphics on data indicators about the world. Although not as flexible as a statistical program—you cannot use data of your own and you are limited to the visualizations already on the page—Gapminder offers a lot of exciting tools for exploring the data provided. Similar technology is used in the Google public data explorer (<http://www.google.com/publicdata/home>).
- JMP (<http://www.jmp.com/>): JMP is a commercial program that also features interactive graphics. There are also student versions and textbooks that use it for analysis.
- Spotfire (<http://spotfire.tibco.com/>): This is a commercial program that started on a Human Computer Interaction lab and includes many innovations in graphics and data analysis. Tableau (<http://www.tableausoftware.com/>) is another commercial program with similar features.

The list above is likely incomplete in some respects and is intended to serve simply as a starting point for readers interested in exploring the different alternatives currently available.

6. Conclusion

Dynamic graphics are an exceptional tool for teaching multivariate data analysis methods to students of Psychology. For example, dynamic parallel boxplots are an excellent means of introducing students to multivariate data analysis. Students generally like interacting with the plot and visualizing the profiles of the observations with different datasets. As the math involved is minimal, they can start playing with the data right away, identifying outliers and specific observations they are curious about, or clustering groups of observations with similar profiles across variables all by themselves. Often, we set up a projector and invite students to show their findings to the class, and then discuss them as a group.

Dynamic graphics can also be applied to more sophisticated cases, such as introducing PCA or Cluster Analysis methods. In this article we illustrate how dynamic graphics can help students with limited mathematical knowledge explore the underlying concepts and understand the output of these multivariate methods. Today, teachers have a variety of software available to implement these graphic techniques (e.g., ViSta, GGobi, etc.); although the featured software may not be as

well known and widely used as other conventional statistics systems, such as SPSS, they are more than sufficient for the purposes discussed in this paper. We hope this report encourages the use of dynamic graphics in teaching multivariate data analysis in psychology and related sciences.

Appendix: Downloading and Installing ViSta

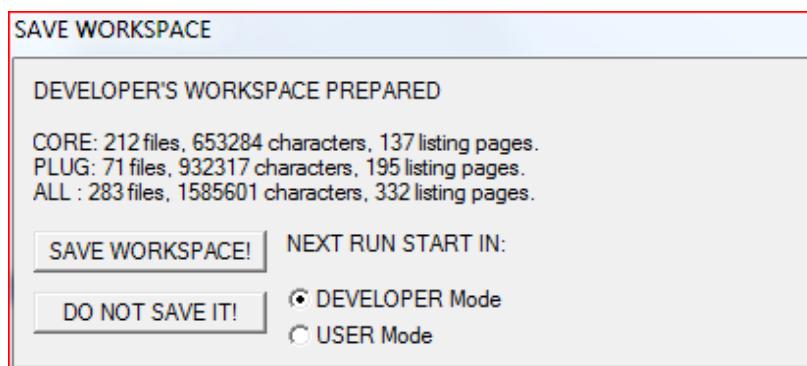
As of this writing, the most recent version of ViSta is 7.9.2.5. This version runs only on MS Windows (XP, Vista and 7). Users of MacOS or Linux may find earlier versions of ViSta on the internet; however, these earlier versions are no longer supported. In particular, MacViSta 5.6, available at <http://forrest.psych.unc.edu/research/vista-frames/version.html>, only works with pre-OSX versions of MacOS. Alternatively, users of Intel Macintoshes may use the free [BootCamp](#) or [VirtualBox](#) for running MS Windows on their computers in order to use the most recent version of ViSta. Users of Linux may use similar solutions for the same purpose.

ViSta may be downloaded at the following internet address (www.uv.es/visualstats/Book/DownloadBook.htm). Click on the link Download Vista 7.9.2.5 for the current version. Download the compressed file (.zip) to your computer. (Note: It may take a couple of minutes for the compressed file to download.) To install ViSta from this file, the user must:

Decompress the folder in the directory in which the user wishes to install ViSta (a natural choice is Program Files/ViSta 7.x.x). (Note: Extracting all files may take several minutes.)

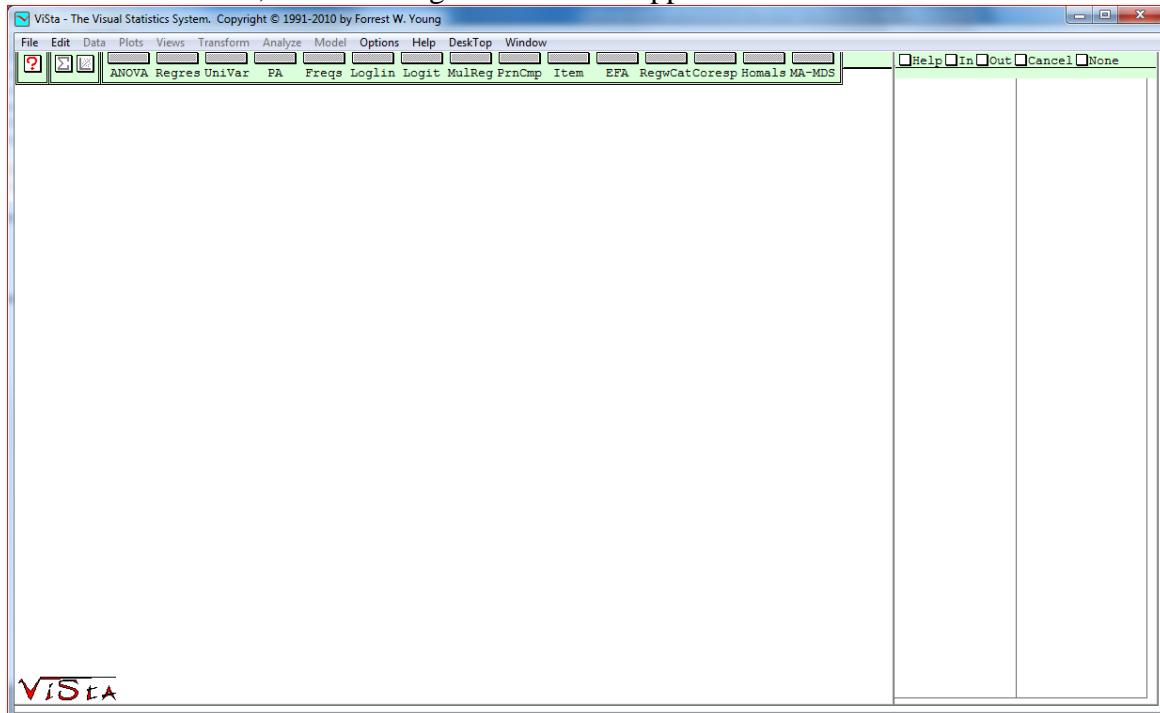
1. Startup the ViSta.exe program by clicking on the icon shown below:

2. Wait until the following ViSta dialog box appears:



3. In the dialog box above, choose SAVE WORKSPACE!. Choose Developer Mode or User Mode depending on your profile (most users should choose User Mode).
4. Startup the ViSta.exe program again by clicking on the ViSta.exe icon again.

5. After a few seconds, the following screen should appear:



6. On this screen, go to the File menu and choose Open Data. Navigate the file system until you find the specific data file you wish to open. In this paper, we used the following files:
Crime Data: /data/princomp/crime.vdf
Dermatology: data/princomp/pca_dermatology.vdf

Important note: Do not move the contents of the ViSta folder once you have installed ViSta. If you do, it will no longer function. If you want to install ViSta in a different directory, delete the existing ViSta folder and follow the installation procedures above.

Support for ViSta can be obtained at the following webpage: <http://www.uv.es/visualstats/Book/>. This page offers information, a discussion group, e-mail addresses for the maintainers of the software and other information. As ViSta runs on Windows 7, we foresee that it will be available for many years to come.

Acknowledgements

ViSta would not have been possible without the work of Forrest W. Young. Forrest was the creator and designer of ViSta, both in terms of its look and feel, and in terms of its internal software architecture. He also implemented the design and wrote much of the documentation. He worked on the ViSta project since 1990, receiving considerable help from his students and colleagues, until his premature death in 2006.

References

Anderson, J. E., and Dayton, J. D. (1995). "Instructional Regression Modules Using XLISP-STAT", Journal of Statistics Education, 3 [On-line] Available at:
<http://www.amstat.org/publications/jse/v3n1/anderson.html>

Cook, D. (2009). "Incorporating Exploratory Methods using Dynamic Graphics into Multivariate Statistics Classes: Curriculum Development". In MC Shelley II, LD Yore, B Hand (eds.). Quality Research in Literacy and Science Education: International Perspectives and Gold Standards, pp. 337-355. Dordrecht, Netherlands: Springer.

Cook, D., and Swayne, D. F. (2007). "Interactive and Dynamic Graphics for Data Analysis", New York: Springer.

Gabriel, K. R. (1971). "The biplot graphic display of matrices with application to principal component analysis", Biometrika, 58, 453-467.

Guvenir, H. A., Demiroz, G., and Ilter, N. (1998). "Learning differential diagnosis of erythematous-squamous diseases using voting feature intervals", Artificial Intelligence in Medicine, 13, 147-165.

Henderson, H. V., and Velleman, P. F. (1981). Building Regression Models Interactively-Data originally collected from Consumer Reports, Biometrics, 391-411.

Inselberg, A. (1985). "The plane with parallel coordinates," The Visual Computer , 1, 69-97.

Marasinghe, M., Duckworth, W.M., and Shin, T-S., (2004). "Tools for Teaching Regression Concepts Using Dynamic Graphics", Journal of Statistics Education, 12, 2, [On-line] Available at: <http://www.amstat.org/publications/jse/v12n2/marasinghe.html>

Theus, M. and Urbanek, S. (2009). Interactive Graphics for Data Analysis: Principles and Examples. Boca Raton, FL: Chapman & Hall/CRC Computer Science & Data Analysis.

Velleman, P. F. (1995). DataDesk version 5, Ithaca, New York: DataDescription Inc.

Verzani, J. (2008). "Using R in Introductory Statistics Courses with the pmg Graphical User Interface," *Journal of Statistics Education* , 16, 1-17, [On-line] Available at:
<http://www.amstat.org/publications/jse/v16n1/verzani.html>

Wegman, E. J. and Luo, Q. (1997). "High dimensional clustering using parallel coordinates and the grand tour," *Computing Science and Statistics* , 28, 361-368.

Weisberg, S. (2005). "Lost Opportunities: Why We Need a Variety of Statistical Languages," *Journal of Statistical Software* , 13, 1-12. [On-line] Available at:
<http://www.jstatsoft.org/v13/i01/paper>

Wiberg, M. (2009). "Teaching Statistics in Integration with Psychology". *Journal of Statistics Education*, 17, 1, [On-line] Available at:
<http://www.amstat.org/publications/jse/v17n1/wiberg.html>

Young, F. W., and Sarle,W. S. (1982). *Exploratory Multivariate Data Analysis*, SAS Institute.

Young, F. W., Valero-Mora, P. M., and Friendly, M. (2006). *Visual Statistics: Seeing Data with Dynamic Interactive Graphics*. NJ: Wiley & Sons.

Yu, C. H., Andrews, S., Winograd, D., Jannasch-Pennell, A., & DiGangi, S. (2002). Teaching factor analysis in terms of variable space and subject space using multimedia visualization. *Journal of Statistics Education*, 10 [On-line] Available at:
<http://www.amstat.org/publications/jse/v10n1/yu.html>

Pedro M. Valero-Mora
Departamento de Metodología de las Ciencias del Comportamiento
Universitat de València (Spain)

Rubén D. Ledesma
Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina)
Universidad Nacional de Mar del Plata (Argentina)
