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Abstract 
 

The method of propositional manipulation (MPM) aims to help students develop conceptual 

understanding of statistics by guiding them into self-explaining propositions. To explore task- 

and student-related factors influencing students‟ ability to learn from MPM, twenty 

undergraduate students performed six learning tasks while thinking aloud. The results indicate 

that whether students learn from MPM depends on their statistics proficiency level, the subject 

matter, the number of propositions in the learning task, and the instructions. MPM learning tasks 

should be tailored to the students‟ level of expertise and students should be instructed more than 

once to integrate all propositions in the learning task into their arguments.  

 

1.  Introduction 
 

The statistics knowledge domain comprises abstract concepts that frequently build on other 

concepts and have no meaning outside the domain. This, together with other factors (e.g., the 

place in the study curriculum, the student‟s background and motivation, inappropriate 

instructional formats), makes it difficult for students to develop conceptual understanding of 

statistics (i.e., an understanding of the statistical concepts and the relationships between these 
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concepts; Huberty, Dresden, & Bak, 1993). The method of propositional manipulation, in short 

MPM (Broers, 2008), aims to help students develop conceptual understanding by guiding them 

into self-explaining the subject matter. 

 

1.1  Theoretical groundwork for MPM 
 

When studying statistics literature, attending a lecture, or when performing a learning task on 

statistics, students are confronted with important concepts and core ideas. Students first have to 

isolate the important ideas by deriving their constituent elements, and then relate and integrate 

these elements into schemata and gradually develop an integrated knowledge network (Novak, 

2002). Knowledge of isolated statistical ideas and elements is called propositional knowledge, 

whereas the ability to relate and integrate these elements is called conceptual understanding 

(Huberty et al., 1993). Propositional knowledge is a necessary but not sufficient condition for 

conceptual understanding (Marshall, 1995). Developing conceptual understanding also involves 

self-explanation and argumentation (Aleven & Koedinger, 2002; Fischer, 2002; Knipfer, Mayr, 

Zahn, Schwan, & Hesse, 2009). In the domain of statistics, guiding students into self-explanation 

as in MPM appears to enhance learning outcomes more than unguided self-explanation (Broers 

& Imbos, 2005; Broers, Mur, & Bude, 2005), most likely because unguided self-explanation 

requires students to find out themselves which are the relevant propositions in the subject matter. 

The latter can easily lead to disorientation on the part of the students.  

 

Learning imposes cognitive load on students (Van Merrienboer & Sweller, 2005). Cognitive load 

consists of three types of load that are assumed to be additive: intrinsic load, germane load, and 

extraneous load. Intrinsic load depends on task complexity and the students‟ statistics 

proficiency level. This type of load should be manipulated in instructional design by selecting 

learning tasks that fit to the students‟ statistics proficiency level (Schnotz & Kuerschner, 2007). 

As the intrinsic load imposed on students when studying statistics is usually high, a learning task 

that is too difficult will easily lead to cognitive overload (Kalyuga, 2009). Furthermore, all 

instructional features not directly beneficial for learning impose extraneous load on the student. 

To have sufficient capacity available for germane load, that is load from instructional features 

and learning processes enhancing learning (e.g., self-explanation and argumentation), extraneous 

load should be minimized. Germane load is not only constrained by intrinsic and extraneous 

load, but also by students‟ interests and learning orientations, and affective and motivational 

aspects.  

 

Having students learn by themselves in the domain of statistics easily leads to cognitive overload 

and disorientation on the part of the students, and as a consequence they will not develop proper 

knowledge and understanding of the subject matter. There is a need for an instructional format 

that stimulates the student to self-explain without experiencing cognitive overload, and this is 

exactly the focus of MPM.  

 

1.2  MPM and domain-specific thought-processes in statistics 
 

MPM comprises three steps. In the first step, the instructor determines the subject matter and 

divides it into a limited number of propositions. Propositions are statements referring to single 

statistical ideas and concepts (e.g., arithmetic mean, mode, and z-score). The number of 
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propositions depends on size and content of the subject matter. As mentioned previously, 

intrinsic cognitive load needs to be manipulated in the instructional design by selecting learning 

tasks matching the students‟ statistics proficiency level. Therefore, which propositions are 

chosen by the instructor should depend on the students‟ statistics proficiency level. The 

instructor formulates questions, each referring to one proposition. Examples of propositions and 

questions referring to these propositions are presented in Box 1.  

 

Box 1. Example of propositions and questions referring to propositions 

 

 Proposition 1: a z-score expresses the deviation of a score from the arithmetic mean, 

relative to the standard deviation. 

Question referring to proposition 1: what is expressed by a z-score? 

 

 Proposition 2: the z-score of a score equal to the arithmetic mean equals zero. 

 Question referring to proposition 2: what is the case when z equals zero? 

 

 Proposition 3: the arithmetic mean is strongly influenced by scores in the tail of a skewed 

distribution.  

 Question referring to proposition 3: why is the arithmetic mean not robust against 

skewness? 

 

 Proposition 4: the mode in a unimodal distribution is the peak of that distribution. 

 Question referring to proposition 4: what is expressed by the mode in a unimodal 

distribution? 

 

 

Thus, the idea is that if the instructor wants students to learn the four propositions presented in 

Box 1, (s)he has to formulate questions referring to each of these propositions. By having the 

instructor determine and decompose the subject matter this way, students have more cognitive 

resources available for learning. Having the student search for the relevant propositions 

themselves would increase extraneous load, as this search process is not directly beneficial for 

learning. 

 

In the second step of MPM, students are instructed to answer the questions formulated in the first 

step. Students are provided with the questions (e.g., “what is expressed by a z-score?”), not the 

actual propositions (e.g., “a z-score expresses the deviation of a score from the arithmetic mean, 

relative to the standard deviation”). The propositions are taught to the students in lectures and 

they can be found in the literature to be studied. By having students answer questions referring to 

propositions, they become aware of important misconceptions and they develop the propositional 

knowledge needed for building conceptual understanding. Students are stimulated to self-explain 

the subject matter and they are guided into this process of self-explanation by means of the 

questions. Given the abstract and cumulative nature of statistics and the frequent and tough 

misconceptions students have about the subject matter, this second step of MPM is a necessary 

step for developing conceptual understanding of statistics. 
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It is only in the third step of MPM that students begin to develop conceptual understanding, 

namely by performing a series of MPM learning tasks. In an MPM learning task, students have 

to relate and integrate a number of propositions into an argument that proves a given hypothesis 

to be either true or false. In contrast to propositions, the hypothesis typically comprises multiple 

statistical ideas and concepts. Therefore, hypotheses are generally of a higher complexity level 

than propositions. Once students master the propositions (i.e., propositional knowledge), they 

should relate and integrate these propositions into an argument in such a way that the argument 

enables them to understand why the hypothesis is true or false (i.e., conceptual understanding).  

 

The propositions have been chosen by the instructor in the first step. For each proposition, the 

instructor formulates one question (for examples see Box 1). In the second step, students answer 

these questions (and thereby discover the propositions). In the third step, the instructor gives the 

students a hypothesis; then the instructor attaches several propositions formed as questions to 

this hypothesis. The complexity level and the exact formulation of the hypothesis depend on the 

learning goals of the statistics course: what interrelationships between statistical ideas and 

concepts do we want students to know at the end of the course? Next, which questions are 

attached to the hypothesis depends on the learning goals of the statistics course as well as on the 

specific content of the hypothesis. Consider the example presented in Box 2.  

 

Box 2. Example of an MPM learning task in the statistics domain 

 

 Hypothesis: If a distribution is unimodal and skewed to the right, the mode of that 

distribution has a negative z-score. 

[1] Why is the arithmetic mean not robust against skewness? 

 [2] What is expressed by the mode in a unimodal distribution? 

 [3] What is expressed by a z-score? 

 [4] What is the case when z equals zero? 

 

 

Suppose, the instructor wants students to learn that although in a unimodal and symmetric 

distribution the mode and the arithmetic mean are equal, in a unimodal but skewed distribution 

the arithmetic mean is shifted towards the tail of that distribution. In a unimodal and symmetric 

distribution, the z-score of the mode equals zero, whereas in a unimodal but skewed distribution 

the z-score of the mode is not equal to zero. Thus, the instructor formulates the hypothesis 

presented in Box 2. The hypothesis includes the concepts „mode‟, „unimodal distribution‟, and 

„z-score‟. This explains why questions [2] and [3] have been attached. Further, the z-distribution 

is a unimodal and symmetric distribution, meaning that mode, median, and arithmetic mean are 

equal. This is why questions [1] and [4] are useful here. When students are confronted with the 

hypothesis only, they may not be able to answer that the hypothesis in question is true. And even 

if answering this question, the answer – “true” or “false” – may reflect a rule that was learnt by 

heart right before the exam, without learning the meaning of the statistical concepts the 

hypothesis comprises. The latter being the case, it is very likely that students will not be able to 

solve other hypotheses comprising the same propositions.  

 

MPM stimulates students to engage in meaningful learning, as it stimulates them to self-explain 

the elements underlying the more complex hypothesis. The students must form an argument for 
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the truth or falsity of the hypothesis based on the answers to the questions and the connections 

between them. Students are not expected to learn the propositions through MPM learning tasks. 

It is in the previous (i.e., second) step of MPM that the propositions are presented to the students, 

in lectures as well as in the (course) literature. Besides, questions should be formulated in such a 

way that they require only short answers and that each question can be related to at least one 

other question. Given q number of questions, the argument can comprise a maximum of q(q – 

1)/2 pairwise connections. The number of valid connections depends on the exact content of the 

propositions formed as questions. In the example presented in Box 2, students have to create an 

argument comprising the answers to the four questions, meaning at least three connections and at 

most six connections. In an MPM learning task, students do not receive instruction on which 

connections should be made and which connections should be left out. The only instruction 

students receive is to create their argument in such a way that each question is related to at least 

one other question, and there is no further instruction around the learning task. A correct 

argument for the example is displayed in Box 3.  

 

Box 3. Example of an MPM argument in the statistics domain 

 

 In a unimodal distribution, the mode is the peak of the distribution [question 2]. In the 

case of a skewed distribution, the arithmetic mean is strongly influenced by scores in the 

tail of that distribution [question 1]. Therefore, the arithmetic mean in this distribution 

will be lying more towards the tail than the mode [questions 1 and 2 are related]. A z-

score expresses how many standard deviations the original observation deviates from the 

arithmetic mean and in which direction [question 3]. In the case that z equals zero, the 

original observation does not deviate from the arithmetic mean [questions 3 and 4 

related]. Given that the distribution here is skewed to the right, the mode is lower than the 

arithmetic mean, and therefore, the z-score of the mode is negative [questions 2 and 3]. 

Thus, the hypothesis is correct.  

 

 

Each question refers to a single statistical idea or concept. Therefore, a correct argument 

comprises a relevant set of true propositions and can prove a given hypothesis to be either true or 

false. Which hypothesis and which questions one chooses for constructing an MPM learning task 

depends on the learning goals of the statistics course as well as on the students‟ statistics 

proficiency level. For example, the learning task presented in Box 2 may increase understanding 

on the part of students who have just attended the relevant lecture and studied the accompanying 

literature, whereas for someone who has profound knowledge and understanding of descriptive 

statistics, this learning task may be too easy to increase understanding. Thus, when formulating 

the hypothesis and questions in an MPM learning task, students‟ statistics proficiency level has 

to be taken into account. Further, to put a learning task into a (real-life) context, contextual 

information (e.g., a problem) can precede the hypothesis. 

 

Developing conceptual understanding requires a sound propositional knowledge as well as self-

explanation and argumentation, and MPM encompasses all these elements. By having the 

instructor choose the propositions, students are guided into self-explanation of these 

propositions, which helps them to develop propositional knowledge. Next, it is the manipulation 
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of propositions in learning tasks that guides students into self-explanation and argumentation on 

a higher, more complex level, which helps them to develop conceptual understanding. 

 

1.3  Factors affecting MPM success 
 

There are at least five factors that can affect students‟ ability to perform an MPM learning task 

and learn from such a task.  

 

First of all, lack of propositional knowledge may hamper students‟ ability to create an argument. 

As mentioned before, studying and self-explaining the propositions is a necessary step towards 

developing conceptual understanding. A question of interest to the current study is to what extent 

instructing students to study and self-explain the propositions (i.e., in the form of questions) 

helps them to develop propositional knowledge.  

 

Second, even if students have the propositional knowledge needed to create their argument, there 

is no guarantee that creating the argument contributes to learning, and whether this interacts with 

students‟ statistics proficiency level.  

 

Third, an interesting question is whether students use all their propositional knowledge in the 

argument explicitly, or whether they tend to leave some propositions implicit.   

 

Fourth, as in the argument every question needs to be related to at least one other proposition, 

choosing more propositions means students have to produce more relationships. It can be 

expected that cognitive load increases as the number of propositions to be integrated into the 

argument increases. An interesting question is the consequences of choosing more propositions 

in terms of learning outcomes.  

 

Fifth, depending on students‟ statistics proficiency level and on the complexity of the subject 

matter, increased cognitive load can either increase or decrease learning outcomes. Proficient 

students may learn optimally from an MPM learning task on relatively complex subject matter, 

for example from inferential statistics, or from a learning task comprising a higher number of 

propositions, whereas less proficient students may only benefit from an MPM learning task on 

less complex subject matter, for example from descriptive statistics, or from a learning task 

consisting of only a few propositions. 

 

The current study addressed the abovementioned factors that might affect MPM success with 

five research questions:  

 

1. To what extent do students understand the propositions in an MPM learning task after 

studying the accompanying questions that refer to these propositions? 

2. What is the effect of creating an MPM argument on cognitive load and learning 

outcomes? 

3. To what extent do students integrate all propositions, represented by the questions, into 

their argument? 

4. How does the number of propositions in an MPM learning task affect cognitive load and 

learning outcomes? 
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5. Is MPM equally effective for relatively complex subject matter (e.g., inferential statistics) 

as for less complex subject matter (e.g., descriptive statistics)? 

 

Before examining MPM learning tasks in an experimental setup, it is important to have an 

overall idea about what factors influence a student‟s ability to learn from such tasks and how 

these factors interact. To acquire as much knowledge as possible about how an instructional 

method works in practice, it is important to combine different research methods. Explorative 

studies may prioritize subsequent experimental studies. Therefore, the current study was 

explorative, combining quantitative measures for cognitive load and qualitative measures (i.e., a 

mixed method approach), using a technique from the cognitive research tradition, namely 

thinking aloud while performing a series of MPM learning tasks.  

 

2.  Method 
 

The research questions were studied by having students with different statistics proficiency 

levels think aloud while working on a total of six learning tasks.  

 

2.1  Participants 
 

Twenty bachelor psychology students who passed the first-year statistics exam volunteered. The 

first-year statistics course covered probability calculus, sampling distributions, null hypothesis 

testing, confidence intervals, t test, one-way analysis of variance (ANOVA), and χ
2
 test. Students 

with an exam score of six or higher on a ten point scale, pass the exam. Typically, about 55% of 

the students pass this exam the first time. To create sufficient variability in statistics proficiency 

level, two samples were drawn: ten students with a low proficiency level (i.e., low proficiency 

group), and ten students with a high proficiency level (i.e., high proficiency group). The lower 

proficiency group consisted of students who passed the exam with six or seven on a ten point 

scale, and the higher proficiency group consisted of students with grades eight or higher.  

 

2.2  Materials  
 

The learning material is found in the Appendix. To answer the questions on the number of 

propositions and the potential of MPM for descriptive versus inferential statistics, the six 

learning tasks differed in topic and in the number of propositions to be linked in the argument. 

Three of the learning tasks covered different topics within descriptive statistics, including 

association in a two-way table (three propositions), histogram and intervals of scores (four 

propositions), and the usability of the correlation coefficient judging from a scatterplot (five 

propositions). The other three learning tasks covered different topics within inferential statistics, 

namely the expected mean (three propositions), Type II error (four propositions), and statistical 

significance (five propositions).  

 

To answer the question to what extent students understand the propositions in an MPM learning 

task after studying the accompanying questions, they received a list with the questions that 

appeared in these learning tasks, with the instruction to study them carefully from Moore and 

McCabe‟s (2009) textbook. Since the questions appeared in the learning tasks to be performed a 
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week later as well, a separate list of the questions to be studied at home is not included in the 

Appendix.  

 

As we were interested in effects of different aspects of MPM on learning outcomes as well as on 

cognitive load, we needed a device to measure cognitive load imposed on the students when 

performing the learning tasks. Cognitive effort is an accepted indicator for cognitive load 

imposed on a student (Paas, 1992). Typically, students have to indicate on a nine point scale how 

much cognitive effort performing a task or solving a problem required from them, one being 

virtually no cognitive effort at all and nine being the maximum cognitive effort. Although most 

studies use the nine point scale, to create more variability in cognitive effort we used a visual 

analog scale (VAS). In the latter, students are instructed to indicate how much cognitive effort 

performing a task or solving a problem required by drawing a small vertical line on a horizontal 

continuous line going from 0 (left) to 100 (right). Such scales have been used in numerous 

studies in various domains the last nineteen years, and have acceptable reliability and validity for 

those domains (e.g., DeLoach, Higgins, Caplan, & Stiff, 1998; Gallagher, Bijur, Latimer, & 

Silver, 2002; Myles, Troedel, Boquest, & Reeves, 1999). To our knowledge, reliability and 

validity estimates for studies in educational settings are still lacking. The reason why we chose 

the VAS in the current study was to create more variability in cognitive effort ratings. For each 

learning task, the VAS was administered twice. In the next section (procedure), it is explained 

why and how this was done.  

 

2.3  Procedure 
 

For all the learning tasks, the procedure was the following. To make sure that students 

understood what they had to do in a learning task, they had to first read and summarize aloud 

contextual information and a hypothesis. Eventual misreading or misinterpretation of language 

could be corrected by the researcher. At this point, students did not yet receive the questions 

(referring to the propositions) to be linked into an argument. Students were instructed to explain 

whether the hypothesis was true or false, using the contextual information at hand. Once they 

had given their explanation, they indicated on the VAS how much cognitive effort they 

experienced while performing this task. At this point, we had one solution and one cognitive 

effort indication (for every student) for the learning task in question. In each learning task, this 

solution and cognitive effort indication served as baseline measurement.  

 

After this baseline measurement, students were confronted with the underlying questions in the 

learning task, each referring to one proposition. Before instructing students to create an MPM 

argument, students were asked to answer each of the questions presented to them (i.e., three, 

four, or five questions, depending on the learning task). Their answers provided information on 

the question to what extent students understand the propositions in an MPM learning task after 

studying the accompanying questions that refer to these propositions. As expected, many 

students still demonstrated incomplete knowledge of some of the propositions. Since we wanted 

to know whether students having sufficient propositional knowledge can create an MPM 

argument – propositional knowledge is a necessary condition for conceptual understanding – we 

provided all students (i.e., including those who demonstrated complete knowledge) with standard 

answers to the questions referring to the propositions and instructed them to create an argument 

integrating these propositions (i.e., answers). Their argument should prove whether the 
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hypothesis in the learning task was true or false. Once they had created their argument, they 

indicated again on the VAS how much cognitive effort was experienced while performing this 

task. In each learning task, this solution and cognitive effort indication served as the after-

treatment measurement. 

 

Thus, in each learning task we had two solutions for every student as well as two cognitive effort 

indications, one after their explanation without explicitly referring to the propositions and the 

other after they had created their MPM argument. This enabled us to estimate the effect of 

creating an MPM argument on learning outcomes and cognitive load. If MPM was successful in 

these learning tasks, students‟ MPM arguments would comprise more information than their 

explanations given some minutes earlier. With regard to cognitive load, we did not have specific 

expectations, partly because of the diversity in learning tasks.  

 

Apart from the comparison of students‟ MPM arguments with their explanations given before the 

confrontation with the questions, the MPM arguments provided information with regard to the 

question to what extent students explicate their knowledge of the propositions (i.e., answers to 

the questions) and relationships between them in their argument. To acquire additional 

information on the latter, every pair of questions was isolated and students had to explain what 

relationship they thought existed between the two questions.  

 

2.4  Data analysis 
 

The current study combined quantitative measures (i.e., with regard to cognitive load) and 

qualitative measures (i.e., think-aloud protocols transcribed verbatim). For the qualitative 

analyses, two researchers rated independently from each other. Differences in interpretation were 

discussed in order to seek consensus. 

 

2.4.1  The effect of studying propositions 
  

For the first research question, to what extent students understand the propositions in an MPM 

learning task after studying the accompanying questions that refer to these propositions, 

students‟ answers to the questions in the learning tasks were compared with the answers derived 

from Moore and McCabe‟s (2009) textbook and coded either correct or incorrect by two 

independent coders. Initial agreement between the coders was high (Cohen‟s κ = .90). 

 

2.4.2  The effect of creating an MPM argument 
 

For the second research question, on the effect of creating an MPM argument on cognitive load 

and learning outcomes, students‟ MPM arguments were compared with their explanations given 

before the confrontation with the questions. Two independent raters rated each argument as: (a) a 

correct and complete argument leading to a correct hypothesis evaluation (i.e., a correct “true” or 

“false”), (b) an incomplete (i.e., not all propositions integrated explicitly) and/or partly incorrect 

argument leading to a correct hypothesis evaluation, or (c) an incomplete and/or (partly) 

incorrect argument leading to an incorrect hypothesis evaluation (i.e., an incorrect “true” or 

“false”). Initial agreement between the coders was also high (Cohen‟s κ = .81). 
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Further, as in every learning task students indicated twice how much cognitive effort the learning 

task required from them (i.e., once before and once after creating their MPM argument), split-

plot analysis of variance (ANOVA) was performed for comparing the proficiency groups with 

regard to the effect of creating an MPM argument on cognitive load. The level of significance α 

was Bonferroni corrected for each of the three p-values (i.e., one with regard to the interaction 

effect, and two with regard to the main effects) to correct for multiple testing and increased 

overall Type I error probability. 

 

2.4.3  The extent to which students explicitly integrate propositions in their argument 
 

The coding of the MPM arguments also provided information on the question to what extent 

students explicitly integrate propositions in their argument. However, the question that arises 

here is whether or not mentioning a particular relationship between two propositions reflects a 

mere tendency to leave out a relationship that is known by the student, or it reflects a lack of 

knowledge of that particular relationship on the part of the student. Therefore, it was determined 

per pair of propositions whether students indicated a correct relationship between the two 

propositions. Given that students had the answers to the questions referring to the propositions it 

was relatively easy for them to provide comments on the relationships.  

 

2.4.4  The number of propositions in an MPM learning task 
 

The effect of the number of propositions in a learning task on learning outcomes was examined 

by using the analyses of students‟ arguments described in section 2.4.2. For the effect on 

cognitive load, two-way within-subjects ANOVA was performed. Factors were the number of 

propositions and measurement point (i.e., baseline measurement being after students‟ 

explanation without the propositions to be integrated, after-treatment measurement being after 

students‟ MPM argument). The level of significance α was Bonferroni corrected for each of the 

three p-values. 

 

2.4.5  Descriptive statistics and inferential statistics 
 

Similar to the question on the effect of the number of propositions in a learning task, the question 

on the potential of MPM for descriptive versus inferential statistics was examined by using the 

analyses of students‟ arguments described in section 2.4.2. For the effect on cognitive load, two-

way within-subjects ANOVAs were performed. Factors were subject matter (i.e., descriptive 

versus inferential statistics) and measurement point (i.e., baseline measurement being after 

students‟ explanation without the propositions to be integrated, after-treatment measurement 

being after students‟ MPM argument). The level of significance α was Bonferroni corrected for 

each of the three p-values. 

 

3. Results 
 

Each of the following paragraphs addresses the results with regard to one of the research 

questions of the current study.  

 

3.1  The effect of studying propositions 



Journal of Statistics Education, Volume 19, Number 1 (2011) 

 11 

 

The data suggest that students find it difficult to describe abstract statistical concepts. Although 

all students could answer most questions correctly and demonstrated partial knowledge with 

regard to those questions they could not answer correctly, a total of three questions had a very 

low number of correct answers in both groups. First of all, a total of fifteen students did not 

mention that the correlation coefficient is about linear relationship and not about just any 

relationship. Second, students‟ descriptions of the p-value revealed that many students find it 

difficult to interpret this value as a conditional probability. Third, although students knew 

examples of test statistics, they could not give a general definition of this term. Finally, eight of 

the ten students in the lower proficiency group confused the sampling distribution with the 

distribution of sample scores. In the higher proficiency group, five students made this mistake.  

 

3.2  The effect of creating an MPM argument 
 

With regard to the effect of creating an MPM argument, the data can be summarized as follows. 

First, when asking students to evaluate hypotheses they consider easy – because the hypothesis is 

self-evident, a rule learned by heart, or too easy for their statistics proficiency level – they hardly 

motivate their evaluations. Second, creating an MPM argument does not guarantee that students 

replace their misconceptions by correct knowledge. A quote from a student in the lower 

proficiency group:   

 

“…eh, yes the value is close to 0 and thus I would say that there is almost no association, 

linear association, and, yes, I cannot see any non-linear association here, because whether 

you draw a straight line or any other line you will not manage because the points are so 

spread out and thus I suppose that the correlation coefficient, eh, yes, does give the correct 

value and given that this is here .03, it is, eh, indeed not a good summary of the association 

between x and y” 

 

Third, given the difficulties students experience when describing the statistical concepts 

mentioned, creating an MPM argument integrating these concepts is likely to be difficult for 

them as well. An example is the following:  

 

“Okay, so the hypothesis was eh, whether the expected mean can be expressed in a number… 

hmm… now I am confused… eh… okay… so, I have the, eh, mean of the, eh, neuroticism 

scores… hmm, so the distribution of the sample is not the same as the sampling 

distribution… hmm, yes, but the distribution of the sample… sample mean is eh… I just said 

that the hypothesis is true and I still think that eh… well the sample mean is the expected 

mean, or not? The, sorry, eh, if the sample is drawn at random, then they must be equal… 

[researcher reminds the student that all propositions have to be integrated into the argument, 

conform the instructions] … hmm, yes, I, I see no relation here between the questions… I 

have only the distribution of the sample and not the sampling distribution… so eh… that 

cannot be?... eh but then the hypothesis is incorrect… [researcher reminds the student that 

all propositions have to be integrated into the argument, conform the instructions] … hmm, 

yes, here I have only the mean of the sample, so, eh, that is just a one value of… eh, it is just 

one sample… [researcher reminds the student that all propositions have to be integrated into 

the argument, conform the instructions] eh, the sample mean is not equal to the expected 
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mean, and I do not have the population mean here… yes… the population mean equals the 

expected mean… so the hypothesis is false, because the population mean is not given and 

that one is equal to the expected mean, now I cannot compute the population mean, because I 

just have the distribution of one sample, and thus not the sampling distribution of the mean 

when you repeat an infinite number of times, because, eh, de expected mean is the mean of 

the sampling distribution and that one is not given here… [researcher: thus the hypothesis 

is?] … false.” 

 

This example is from a student in the higher proficiency group. Students‟ arguments in this 

learning task illustrate that frequent misconceptions about the expected mean are that the 

expected mean equals the sample mean or that the expected mean can be computed from mere 

sample data. Before the instruction to create an MPM argument in this learning task, sixteen of 

the twenty students – eight in each group – gave an incorrect explanation leading to an incorrect 

hypothesis evaluation. The instruction to create an MPM argument made six of the proficient 

students aware of their mistake, and as a result they came to a correct hypothesis evaluation. In 

the lower proficiency group, this change was limited to one student. This finding is in line with 

the finding reported in the previous section that describing the concept of sampling distribution is 

difficult, especially for the less proficient students.   

 

With regard to cognitive load, on average, proficient students reported lower cognitive load than 

their less proficient peers. Table 1 displays the average cognitive efforts and standard deviations 

for both proficiency groups before and after the instruction to create an MPM argument, for the 

three learning tasks on descriptive statistics.  

 

Table 1 

Means (and SD) of cognitive effort required for the learning tasks on descriptive statistics.  

 

Condition       N  M (SD) 

 

Explanation before the questions 

 Lower proficiency group     10  45.01 (17.73) 

 Higher proficiency group     10  31.79 (17.39) 

MPM argument 

 Lower proficiency group     10  39.40 (13.41) 

 Higher proficiency group     10  31.52 (16.58) 

 

 

 

The group by condition interaction was not significant, [F(1, 18) = 0.336, p > .50, η
2
 = .018] and 

the same was the case for the main effect of condition, [F(1, 18) = 0.408, p > .50, η
2
 = .022], as 

well as for the group effect, [F(1, 18) = 3.43, p = .08, η
2
 = .160]. As the effect sizes indicate a 

large size effect for the group effect, absence of statistical significance is probably due to small 

sample sizes. Table 2 displays the average cognitive efforts and standard deviations for both 

proficiency groups before and after the instruction to create an MPM argument, for the three 

learning tasks on inferential statistics.  
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Table 2 

Means (and SD) of cognitive effort required for the learning tasks on inferential statistics.  

 

Condition        N  M (SD) 

 

Explanation before the questions 

 Lower proficiency group     10  45.96 (12.00) 

 Higher proficiency group     10  36.34 (17.35) 

MPM argument 

 Lower proficiency group     10  54.41 (13.41) 

 Higher proficiency group     10  46.23 (16.40) 

 

 

 

The group by condition interaction was not significant, [F(1, 18) = 0.048, p > .80, η
2
 = .003], the 

main effect of condition was significant, [F(1, 18) = 7.729, p < .05, η
2
 = .300], and the group 

effect was not significant, [F(1, 18) = 2.340, p > .10, η
2
 = .115]. As the effect sizes indicate a 

medium to large size effect for the group effect, absence of statistical significance is probably 

due to small sample sizes.  

 

The data suggest that evaluating a hypothesis by means of an MPM argument imposes additional 

cognitive load on students when learning inferential statistics, but not when learning descriptive 

statistics.  

 

3.3  The extent to which students explicitly integrate propositions in their argument  
 

Despite the instruction to explicitly integrate propositions, students tend to restrict themselves to 

merely listing the propositions. In most cases, it was only after repeated asking by the researcher 

to relate and integrate propositions that students attempted to do so. The researchers anticipated 

this possibility, and therefore after creating the MPM argument, students were instructed per pair 

of underlying propositions what the relationship between the two propositions is. Although 

initially not all students were able to give appropriate answers to all questions, they were now 

able to describe the relationships for nearly all pairs of propositions. Not clear is whether this 

ability was a consequence of seeing the standard answers to the questions or partly an effect of 

creating an MPM argument. These findings and those in the previous two sections together 

suggest two practical implications for MPM. First, sufficient propositional knowledge is a firm 

necessary condition for creating an MPM argument. Second, to avoid that relevant propositional 

knowledge does not appear in the argument, the instruction to integrate all propositions in the 

learning task in the argument should be clear and repeated.  

 

3.4 The number of propositions in an MPM learning task 
 

Table 3 presents the average cognitive efforts and standard deviations for the number of 

propositions (i.e., for both contents and for all twenty students) before and after the instruction to 

create an MPM argument.   
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Table 3 

Means (and SD) of cognitive effort experienced as a function of the number of propositions.  

 

Condition        N  M (SD) 

 

Explanation before the questions 

 Three propositions      20  49.03 (19.21) 

 Four propositions      20  37.90 (16.75) 

 Five propositions      20  32.40 (14.57) 

MPM argument 

 Three propositions      20  55.41 (13.27) 

 Four propositions      20  34.76 (21.06) 

 Five propositions      20  38.51 (17.82) 

 

 

 

Two-way within-subjects ANOVA revealed a non-significant interaction between the number of 

propositions and the learning format, [F(2, 38) = 2.405, p > .10, η
2
 = .112], and a significant 

main effect for the number of propositions, [F(2, 38) = 15.552, p < .001, η
2
 = .450]. From further 

analysis it appears that the proposition effect is quadratic, [F(1, 18) = 6.229, p < .05, η
2
 = .247] 

and that a learning task consisting of three underlying propositions requires significantly more 

cognitive effort than a learning task consisting of four or five underlying propositions. It is 

difficult to interpret this quadratic effect, as it may indicate some kind of novelty effect: for both 

descriptive and inferential statistics, the first learning task students were confronted with 

consisted of three propositions and the learning tasks following consisted of four and five 

propositions respectively.  
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3.5.  Descriptive statistics and inferential statistics 
 

Table 4 presents the average cognitive efforts and standard deviations for statistical topic before 

and after the instruction to create an MPM argument.  

 

Table 4 

Means (and SD) of cognitive effort required as a function of statistical topic.  

 

Condition        N  M (SD) 

 

Explanation before the questions 

 Descriptive statistics      20  38.40 (18.39) 

 Inferential statistics      20  41.15 (15.23) 

MPM argument 

 Descriptive statistics      20  35.46 (15.33) 

 Inferential statistics      20  50.32 (15.17) 

 

 

 

The average cognitive effort to perform the assignment was not only higher for inferential 

assignments than for descriptive assignments, a difference in trend for the different subject 

matters exists as well. Two-way within-subjects ANOVA revealed a significant interaction 

between content and learning format, [F(1, 19) = 5.057, p < .05, η
2
 = .210]. Subsequent analysis 

made clear that the difference between conditions was significant for the learning tasks on basic 

inferential statistics, [F(1, 19) = 8.140, p < .01, η
2
 = .300], and that creating an MPM argument 

required significantly more cognitive effort in learning tasks on elementary inferential statistics 

than in learning tasks on descriptive statistics, [F(1, 19) = 9.730, p < .05, η
2
 = .339]. Apparently, 

it demands a considerable cognitive effort from the student to do an inferential statistics 

assignment in MPM format. Together with the finding that, in the higher proficiency group, 

confronting students in MPM format with the concepts of sampling distribution and expected 

mean leads to an increased awareness of a misconception and, as a consequence, better 

performance, one can infer that the additional cognitive effort due to working in MPM format 

can lead to better learning outcomes, at least for those having a certain proficiency in 

(inferential) statistics. 

 

4. Discussion 
 

The first major finding is that instructing students to study a list of propositions is effective for 

the easier propositions but less effective for propositions referring to abstract statistical concepts. 

The instruction to study the propositions should be such that students spend more time studying 

abstract statistical concepts. This could be achieved by a list of propositions in which abstract 

concepts are represented by more propositions than easier concepts. In the current study, each 

concept was represented by just one proposition. Future studies may examine the effect of more 

than one proposition referring to an abstract concept. Sufficient propositional knowledge is a 

necessary condition for creating an MPM argument. Therefore, if representation by abstractness 
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in the propositions list leads to more propositional knowledge, the quality of MPM arguments 

may be increased as well.  

 

With regard to the effect of creating an MPM argument, the current study reveals two extremes. 

On the one hand, creating an MPM argument integrating abstract statistical concepts is difficult 

and does not necessarily lead to misconception awareness with regard to these concepts. On the 

other hand, when asking students to evaluate hypotheses they consider easy – because the 

hypothesis is self-evident, a rule learned by heart, or too easy for their statistics proficiency level 

– they hardly motivate their evaluations, nor do they feel motivated to create an MPM argument. 

In line with findings in previous studies (Kalyuga, Ayres, Chandler, & Sweller, 2003; Wetzels, 

2009), the complexity level of each of the aspects of an MPM learning task – contextual 

information, hypothesis and underlying propositions – must be in accordance with the students‟ 

statistics proficiency level. A very easy learning task is not likely to stimulate students to create 

an MPM argument, whereas a very difficult learning task may lead to cognitive overload for the 

students. Future studies should focus on the development and validation of MPM learning tasks 

for different statistics proficiency levels. 

 

Despite the instruction to explicitly integrate propositions, students tend to restrict themselves to 

merely listing the propositions. Although in some learning tasks, this behavior is most likely the 

consequence of a discrepancy between the students‟ statistics proficiency level and task 

difficulty, future studies could focus on the effectiveness of different forms of the instruction to 

integrate all propositions in the argument. For example, to avoid omission of relevant 

propositional knowledge in the argument, one could repeat the instruction every time a link 

between two propositions is made by the student. Another type of instruction is to formulate 

more MPM arguments in a particular learning task.  

 

Since we did not counterbalance the order of learning tasks for the students, the findings with 

regard to the number of propositions in an MPM learning task do not enable us to draw 

straightforward conclusions, only that it appears important to make the student familiar with 

MPM. The findings with regard to cognitive effort appear to reflect that once the student is 

familiar with MPM, the instructional format itself imposes less cognitive load on the student. To 

examine the effect of the number of propositions in an MPM learning task, future studies should 

either treat this effect as a between-subjects factor or counterbalance the order of the learning 

tasks.  

 

The comparison of descriptive statistics and inferential statistics indicates that the topic itself 

needs to be complex enough to stimulate students to work according to MPM. However, the 

finding that the students in the current study are more stimulated to create MPM arguments for 

inferential statistics than for descriptive statistics may reflect the aforementioned discrepancy 

between the students‟ statistics proficiency level and task difficulty. In their study curriculum, a 

course on descriptive statistics precedes the course on inferential statistics and the students were 

selected based on their exam score for the latter. Therefore, future studies should examine the 

potential of MPM for learning descriptive statistics among students starting the course on 

descriptive statistics.  
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The current study has a few limitations. First of all, the results are based on small sample sizes 

and depend upon the actual MPM learning tasks created for this study. Different hypotheses 

based on more fundamental concepts with more basic questions might lead the students to a 

better or worse understanding than the actual MPM learning tasks. Second, task-specific 

characteristics are a confounding factor in some of the comparisons made in the current study. 

Future studies might use assignments that are hierarchical, that is, different assignments on one 

specific topic only varying in the number of constituent propositions. The number of 

propositions should then be a between-subjects factor or the order of the learning tasks should be 

counterbalanced. A third limitation of the current study is that all students were first instructed to 

explain in their own words whether the hypothesis in the learning task was true or false and 

subsequently had to create an MPM argument, based on the standard answers to the questions 

referring to the propositions. It is possible that the learning effect that was found in some of the 

learning tasks was partly induced by the fact that students had been working some time already 

on the learning task and that they had full knowledge of the propositions (i.e., in the form of the 

standard answers). A fourth limitation is that students in the current study received a single 

prompt to create an MPM argument. The results indicate that this procedure can help students 

whose proficiency or prior knowledge matches the difficulty level of the learning task to become 

aware of a misconception and develop conceptual understanding (i.e., by self-explaining and 

integrating the constituent propositions). Taking the third and fourth limitation of the current 

study together, in future studies the instructional format (i.e., explaining in their own words and 

creating an MPM argument) should be a between-subjects factor consisting of three conditions, 

namely a control condition in which students explain in their own words, an MPM condition in 

which the student receives a single prompt to create an MPM argument and a third condition in 

which the student receives a number of prompts to work this way or receives the instruction to 

try to formulate more MPM arguments for the same learning task.  

 

The students in the current study did not have a stake in the outcome. A possible consequence is 

that they may not have tried as hard as students would have if they had a stake in the outcome 

(e.g., a grade on their results). Therefore, a fifth limitation may be students‟ learning outcomes in 

our study were lower than learning outcomes in the educational practice. Finally, as the students 

in the current study were selected on the basis of their performance on the subject matter, they 

were not novices. On the one hand, given the findings with regard to the students‟ proficiency in 

statistics, some studies should contrast the instructional formats for a larger number of tasks, 

varying in difficulty level, for different levels of proficiency or prior knowledge. On the other 

hand, since MPM aims to both guide novices into a complex knowledge domain like statistics 

and help other students to develop a better (conceptual) understanding of the domain, other 

studies should use novices (i.e., no prior knowledge about the topic whatsoever) as participants 

in order to determine whether they can profit from MPM as well. In the latter case, the learning 

tasks to be constructed need to be relatively easy, since the current study has shown that MPM 

can only be fruitful if the learning tasks match the students‟ prior knowledge of the topic. 

 

MPM is a concrete instructional method for the statistics knowledge domain. In this article, we 

present task- and student-related factors influencing students‟ ability to learn from an MPM 

learning task (i.e., statistics proficiency level, subject matter, the number of propositions in the 

learning task, and the instructions). It is now important to examine each of these factors in 

subsequent experimental studies.  
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Appendix 
 

Questions and propositions used 

 

Descriptive statistics, learning task 1 

 

See the cross table below for the association between gender and hair color in a population, in 

which only three colors of hair exist: blond, brown, and black. 

 

 Female Male 

Blond 45 60 

Brown 75 100 

Black 30 40 

Total 150 200 

 

In this population, for both men and women the univariate distribution for hair color is: 30% 

blond, 50% brown and 20% black. 

 

Hypothesis:  

From the information it can be concluded that in this population, there is no association between 

gender and hair color. 

 

Questions: 

[1] What is the marginal distribution of a variable? 

[2] What is the conditional distribution of a variable? 

[3] When can we say there is an association between two categorical variables? 

 

Descriptive statistics, learning task 2 

 

The histogram below shows the distribution of a variable x. The arithmetic mean of this 

distribution equals 5 and its standard deviation is 2.12, hence the length of the interval 

„arithmetic mean plus or minus one time the standard deviation‟ equals 4.24. The first quartile 

(Q1) equals 3.5, the third quartile (Q1) equals 6.5. 
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Hypothesis: 

For this distribution of variable x, the interval „arithmetic mean plus or minus one time the 

standard deviation‟ contains more than 50% of the values. 

 

Questions: 

[1] How is the interquartile range (IQR) computed from the values of Q1 and Q3? 

[2] What range of values is represented by the IQR? 

[3] What is the definition of the median? 

[4] What can be said about median and arithmetic mean in the case of a perfectly symmetrical 

distribution? 

 

Descriptive statistics, learning task 3 

 

The scatterplot below is about the association between two variables x and y. For this 

distribution, the correlation coefficient rxy is equal to .03. 
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Hypothesis: 

In this case, the correlation coefficient rxy does not give a good summary of the association 

between x and y.  

 

Questions: 

[1] What is expressed by the correlation coefficient rxy? 

[2] What values can the correlation coefficient rxy have? 

[3] What is an outlier in a scatterplot? 

[4] How can an outlier influence the value of the correlation coefficient rxy? 

[5] If the association between two variables x and y is non-linear, what can be said about the 

value of the correlation coefficient rxy? 

 

Basic inferential statistics, learning task 1 

 

Suppose we are interested in the average neuroticism score in a certain population. We draw a 

random sample of N = 40 from that population. Neuroticism was measured on a scale ranging 

from 0 to 38. The average of the 40 neuroticism scores was equal to 25.  

 

Hypothesis:  

The information presented above enables us to express the expected value of the sample mean in 

a number. 

 

Questions: 

[1] What is a sampling distribution? 

[2] What is meant by the expected mean of a random variable? 

[3] What parameter equals the expected mean? 

 

Basic inferential statistics, learning task 2 
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Imagine we test a one-sided hypothesis, our test statistic has a certain value, and the 

accompanying P-value equals .07. Our significance level is .05. 

 

Hypothesis: 

The P-value of .07 does not give rise to a Type I error, but does give rise to a Type II error.  

 

Questions: 

[1] What is a P-value? 

[2] What is meant by significance level? 

[3] What is a Type I error? 

[4] What is a Type II error? 

 

Basic inferential statistics, learning task 3 

 

Hypothesis: 

If the value of our test statistic exceeds the critical value, the P-value is smaller than the 

significance level. 

 

Questions: 

[1] What is a test statistic? 

[2] What is a sampling distribution? 

[3] What is a P-value? 

[4] What is meant by significance level? 

[5] What is meant by critical value in the context of hypothesis testing? 

 

 

References 
 

Aleven, V., & Koedinger, K. R. (2002). An effective metacognitive strategy: Learning by doing 

and explaining with a computer-based cognitive tutor. Cognitive Science, 26, 147-179.  

 

Broers, N. J., & Imbos, Tj. (2005). Charting and manipulating propositions as methods to 

promote self-explanation in the study of statistics. Learning and instruction, 15, 517-538. 

 

Broers, N. J., Mur, M. C., & Bude, L. (2005). Directed self-explanation in the study of statistics. 

In G. Burrill & M. Camden (Eds.) Curricular development in statistics educaiton (pp. 21-35). 

Voorburg, The Netherlands: International Statistical Institute.  

 

Broers, N. J. (2008). “Helping students to build a conceptual understanding of elementary 

statistics,” The American Statistician, 62, 1-6. 

 

DeLoach, L. J., Higgins, M. S., Caplan, A. B., & Stiff, J. L. (1998). “The visual analogue scale in 

the immediate postoperative period: intrasubject variability and correlation with a numeric 

scale.” Anesthesia & Analgesia, 86, 102-106.  

 



Journal of Statistics Education, Volume 19, Number 1 (2011) 

 22 

Fischer, F. (2002). Gemeinsame Wissenskonstruktion – Theoretische und methodologische 

Aspekte [Joint knowledge construction – Theoretical and methodological aspects]. 

Psychologische Rundschau, 53, 119-134. 

 

Gallacher, E., Bijur, P. E., Latimer, C., & Silver, W. (2002). “Reliability and validity of a visual 

analog scale for acute abdominal pain in the ED.” American Journal of Emergency Medicine, 20, 

287-290.  

 

Huberty, C. J., Dresden, J., & Bak, B. (1993). “Relations among dimensions of statistical 

knowledge,” Educational and Psychological Measurement, 53, 523-532. 

 

Kalyuga, S. (2009). “Knowledge elaboration: a cognitive load perspective,” Learning and 

Instruction, 19, 402-410.  

 

Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). “The expertise reversal effect,” 

Educational Psychologist, 38, 23-31.  

 

Knipfer, K., Mayr, E., Zahn, C., Schwan, S., & Hesse, F. W. (2009). Computer support for 

knowledge communication in science exhibitions: Novel perspectivecs from research on 

collaborative learning. Educational Research Review, 4, 196-209.  

 

Marshall, S. (1995). Schemas in problem solving. Cambridge: Cambridge University Press. 

 

Moore, D. S., & McCabe, G. P. (2009). Introduction to the practice of statistics (6
th

 ed.), New 

York: Freeman.  

 

Myles, P. S., Troedel, S., Boquest, M., & Reeves, M. (1999). “The pain visual analog scale: is it 

linear or nonlinear?” Anesthesia & Analgesia, 89, 1517-1520. 

 

Novak, J. D. (2002). Meaningful learning: the essential factor for conceptual change in limited or 

inappropriate propositional hierarchies leading to empowerment of learners. Science Education, 

86, 548-571. 

 

Paas, F. (1992). “Training strategies for attaining transfer of problem-solving skills in statistics: a 

cognitive load approach,” Journal of Educational Psychology, 84, 429-434. 

 

Schnotz, W., & Kuerschner, C. (2007). A reconsideration of cognitive load theory. Educational 

Psychology Review, 19, 469-508.  

 

Van Merrienboer, J., & Sweller, J. (2005). “Cognitive load theory and complex learning: recent 

developments and future directions,” Educational Psychology Review, 17, 147-177. 

 

Wetzels, S. A. J. (2009). “Individualised strategies for prior knowledge activation [dissertation],” 

Netherlands: Interuniversity Centre for Education Research (ICO).  

 

 



Journal of Statistics Education, Volume 19, Number 1 (2011) 

 23 

Jimmie Leppink 

Maastricht University 

P.O. Box 616, 6200 MD Maastricht, The Netherlands 

j.leppink@maastrichtuniversity.nl  

Phone: +31 43 388 2279 

 

Nick J. Broers 

Maastricht University 

P.O. Box 616, 6200 MD Maastricht, The Netherlands 

nick.broers@maastrichtuniversity.nl  

Phone: +31 43 388 2274 

 

Tjaart Imbos 

Maastricht University 

P.O. Box 616, 6200 MD Maastricht, The Netherlands 

tjaart.imbos@maastrichtuniversity.nl  

Phone: +31 43 388 2434 

 

Cees P. M. van der Vleuten 

Maastricht University 

P.O. Box 616, 6200 MD Maastricht, The Netherlands 

c.vandervleuten@maastrichtuniversity.nl  

Phone: +31 43 388 5725 

 

Martijn P. F. Berger 

Maastricht University 

P.O. Box 616, 6200 MD Maastricht, The Netherlands 

martijn.berger@maastrichtuniversity.nl  

Phone: +31 43 388 2258 

 

 

Volume 19 (2011) | Archive | Index | Data Archive | Resources | Editorial Board | 

Guidelines for Authors | Guidelines for Data Contributors | Guidelines for Readers/Data 
Users | Home Page | Contact JSE | ASA Publications 

mailto:j.leppink@maastrichtuniversity.nl
mailto:nick.broers@maastrichtuniversity.nl
mailto:tjaart.imbos@maastrichtuniversity.nl
mailto:c.vandervleuten@maastrichtuniversity.nl
mailto:martijn.berger@maastrichtuniversity.nl
http://www.amstat.org/contents_2011.htm
http://www.amstat.org/jse_archive.htm
http://www.amstat.org/jse_index.htm
http://www.amstat.org/jse_data_archive.htm
http://www.amstat.org/jse_info_service.htm
http://www.amstat.org/jse_board.htm
http://www.amstat.org/jse_author_info.htm
http://www.amstat.org/jse_data_contributor_info.htm
http://www.amstat.org/jse_users.htm
http://www.amstat.org/jse_users.htm
http://www.amstat.org/
mailto:journals@amstat.org
http://www.amstat.org/publications/

