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Abstract

The method of propositional manipulation (MPM) aims to help students develop conceptual
understanding of statistics by guiding them into self-explaining propositions. To explore task-
and student-related factors influencing students’ ability to learn from MPM, twenty
undergraduate students performed six learning tasks while thinking aloud. The results indicate
that whether students learn from MPM depends on their statistics proficiency level, the subject
matter, the number of propositions in the learning task, and the instructions. MPM learning tasks
should be tailored to the students’ level of expertise and students should be instructed more than
once to integrate all propositions in the learning task into their arguments.

1. Introduction

The statistics knowledge domain comprises abstract concepts that frequently build on other
concepts and have no meaning outside the domain. This, together with other factors (e.g., the
place in the study curriculum, the student’s background and motivation, inappropriate
instructional formats), makes it difficult for students to develop conceptual understanding of
statistics (i.e., an understanding of the statistical concepts and the relationships between these
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concepts; Huberty, Dresden, & Bak, 1993). The method of propositional manipulation, in short
MPM (Broers, 2008), aims to help students develop conceptual understanding by guiding them
into self-explaining the subject matter.

1.1 Theoretical groundwork for MPM

When studying statistics literature, attending a lecture, or when performing a learning task on
statistics, students are confronted with important concepts and core ideas. Students first have to
isolate the important ideas by deriving their constituent elements, and then relate and integrate
these elements into schemata and gradually develop an integrated knowledge network (Novak
2002). Knowledge of isolated statistical ideas and elements is called propositional knowledge,
whereas the ability to relate and integrate these elements is called conceptual understanding
(Huberty et al., 1993). Propositional knowledge is a necessary but not sufficient condition for
conceptual understanding (Marshall, 1995). Developing conceptual understanding also involves
self-explanation and argumentation (Aleven & Koedinger, 2002; Fischer, 2002; Knipfer, Mayr,
Zahn, Schwan, & Hesse, 2009). In the domain of statistics, guiding students into self-explanation
as in MPM appears to enhance learning outcomes more than unguided self-explanation (Broers
& Imbos, 2005; Broers, Mur, & Bude, 2005), most likely because unguided self-explanation
requires students to find out themselves which are the relevant propositions in the subject matter.
The latter can easily lead to disorientation on the part of the students.

Learning imposes cognitive load on students (Van Merrienboer & Sweller, 2005). Cognitive load
consists of three types of load that are assumed to be additive: intrinsic load, germane load, and
extraneous load. Intrinsic load depends on task complexity and the students’ statistics
proficiency level. This type of load should be manipulated in instructional design by selecting
learning tasks that fit to the students’ statistics proficiency level (Schnotz & Kuerschner, 2007).
As the intrinsic load imposed on students when studying statistics is usually high, a learning task
that is too difficult will easily lead to cognitive overload (Kalyuga, 2009). Furthermore, all
instructional features not directly beneficial for learning impose extraneous load on the student.
To have sufficient capacity available for germane load, that is load from instructional features
and learning processes enhancing learning (e.g., self-explanation and argumentation), extraneous
load should be minimized. Germane load is not only constrained by intrinsic and extraneous
load, but also by students’ interests and learning orientations, and affective and motivational
aspects.

Having students learn by themselves in the domain of statistics easily leads to cognitive overload
and disorientation on the part of the students, and as a consequence they will not develop proper
knowledge and understanding of the subject matter. There is a need for an instructional format
that stimulates the student to self-explain without experiencing cognitive overload, and this is
exactly the focus of MPM.

1.2 MPM and domain-specific thought-processes in statistics
MPM comprises three steps. In the first step, the instructor determines the subject matter and

divides it into a limited number of propositions. Propositions are statements referring to single
statistical ideas and concepts (e.g., arithmetic mean, mode, and z-score). The number of
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propositions depends on size and content of the subject matter. As mentioned previously,
intrinsic cognitive load needs to be manipulated in the instructional design by selecting learning
tasks matching the students’ statistics proficiency level. Therefore, which propositions are
chosen by the instructor should depend on the students’ statistics proficiency level. The
instructor formulates questions, each referring to one proposition. Examples of propositions and
questions referring to these propositions are presented in Box 1.

Box 1. Example of propositions and questions referring to propositions

Proposition 1: a z-score expresses the deviation of a score from the arithmetic mean,
relative to the standard deviation.
Question referring to proposition 1: what is expressed by a z-score?

Proposition 2: the z-score of a score equal to the arithmetic mean equals zero.
Question referring to proposition 2: what is the case when z equals zero?

Proposition 3: the arithmetic mean is strongly influenced by scores in the tail of a skewed
distribution.

Question referring to proposition 3: why is the arithmetic mean not robust against
skewness?

Proposition 4: the mode in a unimodal distribution is the peak of that distribution.
Question referring to proposition 4: what is expressed by the mode in a unimodal
distribution?

Thus, the idea is that if the instructor wants students to learn the four propositions presented in
Box 1, (s)he has to formulate questions referring to each of these propositions. By having the
instructor determine and decompose the subject matter this way, students have more cognitive
resources available for learning. Having the student search for the relevant propositions
themselves would increase extraneous load, as this search process is not directly beneficial for
learning.

In the second step of MPM, students are instructed to answer the questions formulated in the first
step. Students are provided with the questions (e.g., “what is expressed by a z-score?”), not the
actual propositions (e.g., “a z-score expresses the deviation of a score from the arithmetic mean,
relative to the standard deviation”). The propositions are taught to the students in lectures and
they can be found in the literature to be studied. By having students answer questions referring to
propositions, they become aware of important misconceptions and they develop the propositional
knowledge needed for building conceptual understanding. Students are stimulated to self-explain
the subject matter and they are guided into this process of self-explanation by means of the
questions. Given the abstract and cumulative nature of statistics and the frequent and tough
misconceptions students have about the subject matter, this second step of MPM is a necessary
step for developing conceptual understanding of statistics.
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It is only in the third step of MPM that students begin to develop conceptual understanding,
namely by performing a series of MPM learning tasks. In an MPM learning task, students have
to relate and integrate a number of propositions into an argument that proves a given hypothesis
to be either true or false. In contrast to propositions, the hypothesis typically comprises multiple
statistical ideas and concepts. Therefore, hypotheses are generally of a higher complexity level
than propositions. Once students master the propositions (i.e., propositional knowledge), they
should relate and integrate these propositions into an argument in such a way that the argument
enables them to understand why the hypothesis is true or false (i.e., conceptual understanding).

The propositions have been chosen by the instructor in the first step. For each proposition, the
instructor formulates one question (for examples see Box 1). In the second step, students answer
these questions (and thereby discover the propositions). In the third step, the instructor gives the
students a hypothesis; then the instructor attaches several propositions formed as questions to
this hypothesis. The complexity level and the exact formulation of the hypothesis depend on the
learning goals of the statistics course: what interrelationships between statistical ideas and
concepts do we want students to know at the end of the course? Next, which questions are
attached to the hypothesis depends on the learning goals of the statistics course as well as on the
specific content of the hypothesis. Consider the example presented in Box 2.

Box 2. Example of an MPM learning task in the statistics domain

Hypothesis: If a distribution is unimodal and skewed to the right, the mode of that
distribution has a negative z-score.

[1] Why is the arithmetic mean not robust against skewness?

[2] What is expressed by the mode in a unimodal distribution?

[3] What is expressed by a z-score?

[4] What is the case when z equals zero?

Suppose, the instructor wants students to learn that although in a unimodal and symmetric
distribution the mode and the arithmetic mean are equal, in a unimodal but skewed distribution
the arithmetic mean is shifted towards the tail of that distribution. In a unimodal and symmetric
distribution, the z-score of the mode equals zero, whereas in a unimodal but skewed distribution
the z-score of the mode is not equal to zero. Thus, the instructor formulates the hypothesis
presented in Box 2. The hypothesis includes the concepts ‘mode’, ‘unimodal distribution’, and
‘z-score’. This explains why questions [2] and [3] have been attached. Further, the z-distribution
is a unimodal and symmetric distribution, meaning that mode, median, and arithmetic mean are
equal. This is why questions [1] and [4] are useful here. When students are confronted with the
hypothesis only, they may not be able to answer that the hypothesis in question is true. And even
if answering this question, the answer — “true” or “false” — may reflect a rule that was learnt by
heart right before the exam, without learning the meaning of the statistical concepts the
hypothesis comprises. The latter being the case, it is very likely that students will not be able to
solve other hypotheses comprising the same propositions.

MPM stimulates students to engage in meaningful learning, as it stimulates them to self-explain
the elements underlying the more complex hypothesis. The students must form an argument for
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the truth or falsity of the hypothesis based on the answers to the questions and the connections
between them. Students are not expected to learn the propositions through MPM learning tasks.
It is in the previous (i.e., second) step of MPM that the propositions are presented to the students,
in lectures as well as in the (course) literature. Besides, questions should be formulated in such a
way that they require only short answers and that each question can be related to at least one
other question. Given g number of questions, the argument can comprise a maximum of q(q —
1)/2 pairwise connections. The number of valid connections depends on the exact content of the
propositions formed as questions. In the example presented in Box 2, students have to create an
argument comprising the answers to the four questions, meaning at least three connections and at
most six connections. In an MPM learning task, students do not receive instruction on which
connections should be made and which connections should be left out. The only instruction
students receive is to create their argument in such a way that each question is related to at least
one other question, and there is no further instruction around the learning task. A correct
argument for the example is displayed in Box 3.

Box 3. Example of an MPM argument in the statistics domain

In a unimodal distribution, the mode is the peak of the distribution [question 2]. In the
case of a skewed distribution, the arithmetic mean is strongly influenced by scores in the
tail of that distribution [question 1]. Therefore, the arithmetic mean in this distribution
will be lying more towards the tail than the mode [questions 1 and 2 are related]. A z-
score expresses how many standard deviations the original observation deviates from the
arithmetic mean and in which direction [question 3]. In the case that z equals zero, the
original observation does not deviate from the arithmetic mean [questions 3 and 4
related]. Given that the distribution here is skewed to the right, the mode is lower than the
arithmetic mean, and therefore, the z-score of the mode is negative [questions 2 and 3].
Thus, the hypothesis is correct.

Each question refers to a single statistical idea or concept. Therefore, a correct argument
comprises a relevant set of true propositions and can prove a given hypothesis to be either true or
false. Which hypothesis and which questions one chooses for constructing an MPM learning task
depends on the learning goals of the statistics course as well as on the students’ statistics
proficiency level. For example, the learning task presented in Box 2 may increase understanding
on the part of students who have just attended the relevant lecture and studied the accompanying
literature, whereas for someone who has profound knowledge and understanding of descriptive
statistics, this learning task may be too easy to increase understanding. Thus, when formulating
the hypothesis and questions in an MPM learning task, students’ statistics proficiency level has
to be taken into account. Further, to put a learning task into a (real-life) context, contextual
information (e.g., a problem) can precede the hypothesis.

Developing conceptual understanding requires a sound propositional knowledge as well as self-
explanation and argumentation, and MPM encompasses all these elements. By having the
instructor choose the propositions, students are guided into self-explanation of these
propositions, which helps them to develop propositional knowledge. Next, it is the manipulation
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of propositions in learning tasks that guides students into self-explanation and argumentation on
a higher, more complex level, which helps them to develop conceptual understanding.

1.3 Factors affecting MPM success

There are at least five factors that can affect students’ ability to perform an MPM learning task
and learn from such a task.

First of all, lack of propositional knowledge may hamper students’ ability to create an argument.
As mentioned before, studying and self-explaining the propositions is a necessary step towards
developing conceptual understanding. A question of interest to the current study is to what extent
instructing students to study and self-explain the propositions (i.e., in the form of questions)
helps them to develop propositional knowledge.

Second, even if students have the propositional knowledge needed to create their argument, there
IS no guarantee that creating the argument contributes to learning, and whether this interacts with
students’ statistics proficiency level.

Third, an interesting question is whether students use all their propositional knowledge in the
argument explicitly, or whether they tend to leave some propositions implicit.

Fourth, as in the argument every question needs to be related to at least one other proposition,
choosing more propositions means students have to produce more relationships. It can be
expected that cognitive load increases as the number of propositions to be integrated into the
argument increases. An interesting question is the consequences of choosing more propositions
in terms of learning outcomes.

Fifth, depending on students’ statistics proficiency level and on the complexity of the subject
matter, increased cognitive load can either increase or decrease learning outcomes. Proficient
students may learn optimally from an MPM learning task on relatively complex subject matter,
for example from inferential statistics, or from a learning task comprising a higher number of
propositions, whereas less proficient students may only benefit from an MPM learning task on
less complex subject matter, for example from descriptive statistics, or from a learning task
consisting of only a few propositions.

The current study addressed the abovementioned factors that might affect MPM success with
five research questions:

1. To what extent do students understand the propositions in an MPM learning task after
studying the accompanying questions that refer to these propositions?

2. What is the effect of creating an MPM argument on cognitive load and learning
outcomes?

3. To what extent do students integrate all propositions, represented by the questions, into
their argument?

4. How does the number of propositions in an MPM learning task affect cognitive load and
learning outcomes?
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5. Is MPM equally effective for relatively complex subject matter (e.g., inferential statistics)
as for less complex subject matter (e.g., descriptive statistics)?

Before examining MPM learning tasks in an experimental setup, it is important to have an
overall idea about what factors influence a student’s ability to learn from such tasks and how
these factors interact. To acquire as much knowledge as possible about how an instructional
method works in practice, it is important to combine different research methods. Explorative
studies may prioritize subsequent experimental studies. Therefore, the current study was
explorative, combining quantitative measures for cognitive load and qualitative measures (i.e., a
mixed method approach), using a technique from the cognitive research tradition, namely
thinking aloud while performing a series of MPM learning tasks.

2. Method

The research questions were studied by having students with different statistics proficiency
levels think aloud while working on a total of six learning tasks.

2.1 Participants

Twenty bachelor psychology students who passed the first-year statistics exam volunteered. The
first-year statistics course covered probability calculus, sampling distributions, null hypothesis
testing, confidence intervals, t test, one-way analysis of variance (ANOVA), and »° test. Students
with an exam score of six or higher on a ten point scale, pass the exam. Typically, about 55% of
the students pass this exam the first time. To create sufficient variability in statistics proficiency
level, two samples were drawn: ten students with a low proficiency level (i.e., low proficiency
group), and ten students with a high proficiency level (i.e., high proficiency group). The lower
proficiency group consisted of students who passed the exam with six or seven on a ten point
scale, and the higher proficiency group consisted of students with grades eight or higher.

2.2 Materials

The learning material is found in the Appendix. To answer the questions on the number of
propositions and the potential of MPM for descriptive versus inferential statistics, the six
learning tasks differed in topic and in the number of propositions to be linked in the argument.
Three of the learning tasks covered different topics within descriptive statistics, including
association in a two-way table (three propositions), histogram and intervals of scores (four
propositions), and the usability of the correlation coefficient judging from a scatterplot (five
propositions). The other three learning tasks covered different topics within inferential statistics,
namely the expected mean (three propositions), Type Il error (four propositions), and statistical
significance (five propositions).

To answer the question to what extent students understand the propositions in an MPM learning
task after studying the accompanying questions, they received a list with the questions that
appeared in these learning tasks, with the instruction to study them carefully from Moore and
McCabe’s (2009) textbook. Since the questions appeared in the learning tasks to be performed a
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week later as well, a separate list of the questions to be studied at home is not included in the
Appendix.

As we were interested in effects of different aspects of MPM on learning outcomes as well as on
cognitive load, we needed a device to measure cognitive load imposed on the students when
performing the learning tasks. Cognitive effort is an accepted indicator for cognitive load
imposed on a student (Paas, 1992). Typically, students have to indicate on a nine point scale how
much cognitive effort performing a task or solving a problem required from them, one being
virtually no cognitive effort at all and nine being the maximum cognitive effort. Although most
studies use the nine point scale, to create more variability in cognitive effort we used a visual
analog scale (VAS). In the latter, students are instructed to indicate how much cognitive effort
performing a task or solving a problem required by drawing a small vertical line on a horizontal
continuous line going from 0 (left) to 100 (right). Such scales have been used in numerous
studies in various domains the last nineteen years, and have acceptable reliability and validity for
those domains (e.g., DeLoach, Higgins, Caplan, & Stiff, 1998; Gallagher, Bijur, Latimer, &
Silver, 2002; Myles, Troedel, Boquest, & Reeves, 1999). To our knowledge, reliability and
validity estimates for studies in educational settings are still lacking. The reason why we chose
the VAS in the current study was to create more variability in cognitive effort ratings. For each
learning task, the VAS was administered twice. In the next section (procedure), it is explained
why and how this was done.

2.3 Procedure

For all the learning tasks, the procedure was the following. To make sure that students
understood what they had to do in a learning task, they had to first read and summarize aloud
contextual information and a hypothesis. Eventual misreading or misinterpretation of language
could be corrected by the researcher. At this point, students did not yet receive the questions
(referring to the propositions) to be linked into an argument. Students were instructed to explain
whether the hypothesis was true or false, using the contextual information at hand. Once they
had given their explanation, they indicated on the VAS how much cognitive effort they
experienced while performing this task. At this point, we had one solution and one cognitive
effort indication (for every student) for the learning task in question. In each learning task, this
solution and cognitive effort indication served as baseline measurement.

After this baseline measurement, students were confronted with the underlying questions in the
learning task, each referring to one proposition. Before instructing students to create an MPM
argument, students were asked to answer each of the questions presented to them (i.e., three,
four, or five questions, depending on the learning task). Their answers provided information on
the question to what extent students understand the propositions in an MPM learning task after
studying the accompanying questions that refer to these propositions. As expected, many
students still demonstrated incomplete knowledge of some of the propositions. Since we wanted
to know whether students having sufficient propositional knowledge can create an MPM
argument — propositional knowledge is a necessary condition for conceptual understanding — we
provided all students (i.e., including those who demonstrated complete knowledge) with standard
answers to the questions referring to the propositions and instructed them to create an argument
integrating these propositions (i.e., answers). Their argument should prove whether the
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hypothesis in the learning task was true or false. Once they had created their argument, they
indicated again on the VAS how much cognitive effort was experienced while performing this
task. In each learning task, this solution and cognitive effort indication served as the after-
treatment measurement.

Thus, in each learning task we had two solutions for every student as well as two cognitive effort
indications, one after their explanation without explicitly referring to the propositions and the
other after they had created their MPM argument. This enabled us to estimate the effect of
creating an MPM argument on learning outcomes and cognitive load. If MPM was successful in
these learning tasks, students’ MPM arguments would comprise more information than their
explanations given some minutes earlier. With regard to cognitive load, we did not have specific
expectations, partly because of the diversity in learning tasks.

Apart from the comparison of students’ MPM arguments with their explanations given before the
confrontation with the questions, the MPM arguments provided information with regard to the
question to what extent students explicate their knowledge of the propositions (i.e., answers to
the questions) and relationships between them in their argument. To acquire additional
information on the latter, every pair of questions was isolated and students had to explain what
relationship they thought existed between the two questions.

2.4 Data analysis

The current study combined quantitative measures (i.e., with regard to cognitive load) and
qualitative measures (i.e., think-aloud protocols transcribed verbatim). For the qualitative
analyses, two researchers rated independently from each other. Differences in interpretation were
discussed in order to seek consensus.

2.4.1 The effect of studying propositions

For the first research question, to what extent students understand the propositions in an MPM
learning task after studying the accompanying questions that refer to these propositions,
students’ answers to the questions in the learning tasks were compared with the answers derived
from Moore and McCabe’s (2009) textbook and coded either correct or incorrect by two
independent coders. Initial agreement between the coders was high (Cohen’s x = .90).

2.4.2 The effect of creating an MPM argument

For the second research question, on the effect of creating an MPM argument on cognitive load
and learning outcomes, students’ MPM arguments were compared with their explanations given
before the confrontation with the questions. Two independent raters rated each argument as: (a) a
correct and complete argument leading to a correct hypothesis evaluation (i.e., a correct “true” or
“false”), (b) an incomplete (i.e., not all propositions integrated explicitly) and/or partly incorrect
argument leading to a correct hypothesis evaluation, or (c) an incomplete and/or (partly)
incorrect argument leading to an incorrect hypothesis evaluation (i.e., an incorrect “true” or
“false”). Initial agreement between the coders was also high (Cohen’s x = .81).
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Further, as in every learning task students indicated twice how much cognitive effort the learning
task required from them (i.e., once before and once after creating their MPM argument), split-
plot analysis of variance (ANOVA) was performed for comparing the proficiency groups with
regard to the effect of creating an MPM argument on cognitive load. The level of significance «
was Bonferroni corrected for each of the three p-values (i.e., one with regard to the interaction
effect, and two with regard to the main effects) to correct for multiple testing and increased
overall Type I error probability.

2.4.3 The extent to which students explicitly integrate propositions in their argument

The coding of the MPM arguments also provided information on the question to what extent
students explicitly integrate propositions in their argument. However, the question that arises
here is whether or not mentioning a particular relationship between two propositions reflects a
mere tendency to leave out a relationship that is known by the student, or it reflects a lack of
knowledge of that particular relationship on the part of the student. Therefore, it was determined
per pair of propositions whether students indicated a correct relationship between the two
propositions. Given that students had the answers to the questions referring to the propositions it
was relatively easy for them to provide comments on the relationships.

2.4.4 The number of propositions in an MPM learning task

The effect of the number of propositions in a learning task on learning outcomes was examined
by using the analyses of students’ arguments described in section 2.4.2. For the effect on
cognitive load, two-way within-subjects ANOVA was performed. Factors were the number of
propositions and measurement point (i.e., baseline measurement being after students’
explanation without the propositions to be integrated, after-treatment measurement being after
students” MPM argument). The level of significance a was Bonferroni corrected for each of the
three p-values.

2.4.5 Descriptive statistics and inferential statistics

Similar to the question on the effect of the number of propositions in a learning task, the question
on the potential of MPM for descriptive versus inferential statistics was examined by using the
analyses of students’ arguments described in section 2.4.2. For the effect on cognitive load, two-
way within-subjects ANOVAs were performed. Factors were subject matter (i.e., descriptive
versus inferential statistics) and measurement point (i.e., baseline measurement being after
students’ explanation without the propositions to be integrated, after-treatment measurement
being after students’ MPM argument). The level of significance o was Bonferroni corrected for
each of the three p-values.

3. Results

Each of the following paragraphs addresses the results with regard to one of the research
questions of the current study.

3.1 The effect of studying propositions

10
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The data suggest that students find it difficult to describe abstract statistical concepts. Although
all students could answer most questions correctly and demonstrated partial knowledge with
regard to those questions they could not answer correctly, a total of three questions had a very
low number of correct answers in both groups. First of all, a total of fifteen students did not
mention that the correlation coefficient is about linear relationship and not about just any
relationship. Second, students’ descriptions of the p-value revealed that many students find it
difficult to interpret this value as a conditional probability. Third, although students knew
examples of test statistics, they could not give a general definition of this term. Finally, eight of
the ten students in the lower proficiency group confused the sampling distribution with the
distribution of sample scores. In the higher proficiency group, five students made this mistake.

3.2 The effect of creating an MPM argument

With regard to the effect of creating an MPM argument, the data can be summarized as follows.
First, when asking students to evaluate hypotheses they consider easy — because the hypothesis is
self-evident, a rule learned by heart, or too easy for their statistics proficiency level — they hardly
motivate their evaluations. Second, creating an MPM argument does not guarantee that students
replace their misconceptions by correct knowledge. A quote from a student in the lower
proficiency group:

“...eh, yes the value is close to 0 and thus I would say that there is almost no association,
linear association, and, yes, | cannot see any non-linear association here, because whether
you draw a straight line or any other line you will not manage because the points are so
spread out and thus | suppose that the correlation coefficient, eh, yes, does give the correct
value and given that this is here .03, it is, eh, indeed not a good summary of the association
between x and y”

Third, given the difficulties students experience when describing the statistical concepts
mentioned, creating an MPM argument integrating these concepts is likely to be difficult for
them as well. An example is the following:

“Okay, so the hypothesis was eh, whether the expected mean can be expressed in a number...
hmm... now I am confused... eh... okay... so, I have the, eh, mean of the, eh, neuroticism
scores... hmm, so the distribution of the sample is not the same as the sampling
distribution... hmm, yes, but the distribution of the sample... sample mean is eh... I just said
that the hypothesis is true and I still think that eh... well the sample mean is the expected
mean, or not? The, sorry, eh, if the sample is drawn at random, then they must be equal...
[researcher reminds the student that all propositions have to be integrated into the argument,
conform the instructions] ... hmm, yes, I, I see no relation here between the questions... |
have only the distribution of the sample and not the sampling distribution... so eh... that
cannot be?... eh but then the hypothesis is incorrect... [researcher reminds the student that
all propositions have to be integrated into the argument, conform the instructions] ... hmm,
yes, here I have only the mean of the sample, so, eh, that is just a one value of... eh, it is just
one sample... [researcher reminds the student that all propositions have to be integrated into
the argument, conform the instructions] eh, the sample mean is not equal to the expected

11
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mean, and I do not have the population mean here... yes... the population mean equals the
expected mean... so the hypothesis is false, because the population mean is not given and
that one is equal to the expected mean, now | cannot compute the population mean, because |
just have the distribution of one sample, and thus not the sampling distribution of the mean
when you repeat an infinite number of times, because, eh, de expected mean is the mean of
the sampling distribution and that one is not given here... [researcher: thus the hypothesis
is?] ... false.”

This example is from a student in the higher proficiency group. Students’ arguments in this
learning task illustrate that frequent misconceptions about the expected mean are that the
expected mean equals the sample mean or that the expected mean can be computed from mere
sample data. Before the instruction to create an MPM argument in this learning task, sixteen of
the twenty students — eight in each group — gave an incorrect explanation leading to an incorrect
hypothesis evaluation. The instruction to create an MPM argument made six of the proficient
students aware of their mistake, and as a result they came to a correct hypothesis evaluation. In
the lower proficiency group, this change was limited to one student. This finding is in line with
the finding reported in the previous section that describing the concept of sampling distribution is
difficult, especially for the less proficient students.

With regard to cognitive load, on average, proficient students reported lower cognitive load than
their less proficient peers. Table 1 displays the average cognitive efforts and standard deviations
for both proficiency groups before and after the instruction to create an MPM argument, for the
three learning tasks on descriptive statistics.

Table 1
Means (and SD) of cognitive effort required for the learning tasks on descriptive statistics.

Condition N M (SD)
Explanation before the questions
Lower proficiency group 10 45.01 (17.73)
Higher proficiency group 10 31.79 (17.39)
MPM argument
Lower proficiency group 10 39.40 (13.41)
Higher proficiency group 10 31.52 (16.58)

The group by condition interaction was not significant, [F(1, 18) = 0.336, p > .50, #* = .018] and
the same was the case for the main effect of condition, EF(l, 18) = 0.408, p > .50, #* = .022], as
well as for the group effect, [F(1, 18) = 3.43, p = .08, 5~ = .160]. As the effect sizes indicate a
large size effect for the group effect, absence of statistical significance is probably due to small
sample sizes. Table 2 displays the average cognitive efforts and standard deviations for both
proficiency groups before and after the instruction to create an MPM argument, for the three
learning tasks on inferential statistics.
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Table 2
Means (and SD) of cognitive effort required for the learning tasks on inferential statistics.

Condition N M (SD)
Explanation before the questions
Lower proficiency group 10 45.96 (12.00)
Higher proficiency group 10 36.34 (17.35)
MPM argument
Lower proficiency group 10 54.41 (13.41)
Higher proficiency group 10 46.23 (16.40)

The group by condition interaction was not significant, [F(1, 18) = 0.048, p > .80, #° = .003], the
main effect of condition was significant, [F(1, 18) = 7.729, p < .05, #* = .300], and the group
effect was not significant, [F(1, 18) = 2.340, p > .10, #* = .115]. As the effect sizes indicate a
medium to large size effect for the group effect, absence of statistical significance is probably
due to small sample sizes.

The data suggest that evaluating a hypothesis by means of an MPM argument imposes additional
cognitive load on students when learning inferential statistics, but not when learning descriptive
statistics.

3.3 The extent to which students explicitly integrate propositions in their argument

Despite the instruction to explicitly integrate propositions, students tend to restrict themselves to
merely listing the propositions. In most cases, it was only after repeated asking by the researcher
to relate and integrate propositions that students attempted to do so. The researchers anticipated
this possibility, and therefore after creating the MPM argument, students were instructed per pair
of underlying propositions what the relationship between the two propositions is. Although
initially not all students were able to give appropriate answers to all questions, they were now
able to describe the relationships for nearly all pairs of propositions. Not clear is whether this
ability was a consequence of seeing the standard answers to the questions or partly an effect of
creating an MPM argument. These findings and those in the previous two sections together
suggest two practical implications for MPM. First, sufficient propositional knowledge is a firm
necessary condition for creating an MPM argument. Second, to avoid that relevant propositional
knowledge does not appear in the argument, the instruction to integrate all propositions in the
learning task in the argument should be clear and repeated.

3.4 The number of propositions in an MPM learning task
Table 3 presents the average cognitive efforts and standard deviations for the number of

propositions (i.e., for both contents and for all twenty students) before and after the instruction to
create an MPM argument.
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Table 3
Means (and SD) of cognitive effort experienced as a function of the number of propositions.

Condition N M (SD)
Explanation before the questions
Three propositions 20 49.03 (19.21)
Four propositions 20 37.90 (16.75)
Five propositions 20 32.40 (14.57)
MPM argument
Three propositions 20 55.41 (13.27)
Four propositions 20 34.76 (21.06)
Five propositions 20 38.51 (17.82)

Two-way within-subjects ANOVA revealed a non-significant interaction between the number of
propositions and the learning format, [F(2, 38) = 2.405, p > .10, 4? = .112], and a significant
main effect for the number of propositions, [F(2, 38) = 15.552, p < .001, #° = .450]. From further
analysis it appears that the proposition effect is quadratic, [F(1, 18) = 6.229, p < .05, 5* = .247]
and that a learning task consisting of three underlying propositions requires significantly more
cognitive effort than a learning task consisting of four or five underlying propositions. It is
difficult to interpret this quadratic effect, as it may indicate some kind of novelty effect: for both
descriptive and inferential statistics, the first learning task students were confronted with
consisted of three propositions and the learning tasks following consisted of four and five
propositions respectively.
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3.5. Descriptive statistics and inferential statistics

Table 4 presents the average cognitive efforts and standard deviations for statistical topic before
and after the instruction to create an MPM argument.

Table 4
Means (and SD) of cognitive effort required as a function of statistical topic.

Condition N M (SD)
Explanation before the questions
Descriptive statistics 20 38.40 (18.39)
Inferential statistics 20 41.15 (15.23)
MPM argument
Descriptive statistics 20 35.46 (15.33)
Inferential statistics 20 50.32 (15.17)

The average cognitive effort to perform the assignment was not only higher for inferential
assignments than for descriptive assignments, a difference in trend for the different subject
matters exists as well. Two-way within-subjects ANOVA revealed a significant interaction
between content and learning format, [F(1, 19) = 5.057, p < .05, 4° = .210]. Subsequent analysis
made clear that the difference between conditions was significant for the learning tasks on basic
inferential statistics, [F(1, 19) = 8.140, p < .01, #° = .300], and that creating an MPM argument
required significantly more cognitive effort in learning tasks on elementary inferential statistics
than in learning tasks on descriptive statistics, [F(1, 19) = 9.730, p < .05, 5 = .339]. Apparently,
it demands a considerable cognitive effort from the student to do an inferential statistics
assignment in MPM format. Together with the finding that, in the higher proficiency group,
confronting students in MPM format with the concepts of sampling distribution and expected
mean leads to an increased awareness of a misconception and, as a consequence, better
performance, one can infer that the additional cognitive effort due to working in MPM format
can lead to better learning outcomes, at least for those having a certain proficiency in
(inferential) statistics.

4. Discussion

The first major finding is that instructing students to study a list of propositions is effective for
the easier propositions but less effective for propositions referring to abstract statistical concepts.
The instruction to study the propositions should be such that students spend more time studying
abstract statistical concepts. This could be achieved by a list of propositions in which abstract
concepts are represented by more propositions than easier concepts. In the current study, each
concept was represented by just one proposition. Future studies may examine the effect of more
than one proposition referring to an abstract concept. Sufficient propositional knowledge is a
necessary condition for creating an MPM argument. Therefore, if representation by abstractness
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in the propositions list leads to more propositional knowledge, the quality of MPM arguments
may be increased as well.

With regard to the effect of creating an MPM argument, the current study reveals two extremes.
On the one hand, creating an MPM argument integrating abstract statistical concepts is difficult
and does not necessarily lead to misconception awareness with regard to these concepts. On the
other hand, when asking students to evaluate hypotheses they consider easy — because the
hypothesis is self-evident, a rule learned by heart, or too easy for their statistics proficiency level
— they hardly motivate their evaluations, nor do they feel motivated to create an MPM argument.
In line with findings in previous studies (Kalyuga, Ayres, Chandler, & Sweller, 2003; Wetzels,
2009), the complexity level of each of the aspects of an MPM learning task — contextual
information, hypothesis and underlying propositions — must be in accordance with the students’
statistics proficiency level. A very easy learning task is not likely to stimulate students to create
an MPM argument, whereas a very difficult learning task may lead to cognitive overload for the
students. Future studies should focus on the development and validation of MPM learning tasks
for different statistics proficiency levels.

Despite the instruction to explicitly integrate propositions, students tend to restrict themselves to
merely listing the propositions. Although in some learning tasks, this behavior is most likely the
consequence of a discrepancy between the students’ statistics proficiency level and task
difficulty, future studies could focus on the effectiveness of different forms of the instruction to
integrate all propositions in the argument. For example, to avoid omission of relevant
propositional knowledge in the argument, one could repeat the instruction every time a link
between two propositions is made by the student. Another type of instruction is to formulate
more MPM arguments in a particular learning task.

Since we did not counterbalance the order of learning tasks for the students, the findings with
regard to the number of propositions in an MPM learning task do not enable us to draw
straightforward conclusions, only that it appears important to make the student familiar with
MPM. The findings with regard to cognitive effort appear to reflect that once the student is
familiar with MPM, the instructional format itself imposes less cognitive load on the student. To
examine the effect of the number of propositions in an MPM learning task, future studies should
either treat this effect as a between-subjects factor or counterbalance the order of the learning
tasks.

The comparison of descriptive statistics and inferential statistics indicates that the topic itself
needs to be complex enough to stimulate students to work according to MPM. However, the
finding that the students in the current study are more stimulated to create MPM arguments for
inferential statistics than for descriptive statistics may reflect the aforementioned discrepancy
between the students’ statistics proficiency level and task difficulty. In their study curriculum, a
course on descriptive statistics precedes the course on inferential statistics and the students were
selected based on their exam score for the latter. Therefore, future studies should examine the
potential of MPM for learning descriptive statistics among students starting the course on
descriptive statistics.
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The current study has a few limitations. First of all, the results are based on small sample sizes
and depend upon the actual MPM learning tasks created for this study. Different hypotheses
based on more fundamental concepts with more basic questions might lead the students to a
better or worse understanding than the actual MPM learning tasks. Second, task-specific
characteristics are a confounding factor in some of the comparisons made in the current study.
Future studies might use assignments that are hierarchical, that is, different assignments on one
specific topic only varying in the number of constituent propositions. The number of
propositions should then be a between-subjects factor or the order of the learning tasks should be
counterbalanced. A third limitation of the current study is that all students were first instructed to
explain in their own words whether the hypothesis in the learning task was true or false and
subsequently had to create an MPM argument, based on the standard answers to the questions
referring to the propositions. It is possible that the learning effect that was found in some of the
learning tasks was partly induced by the fact that students had been working some time already
on the learning task and that they had full knowledge of the propositions (i.e., in the form of the
standard answers). A fourth limitation is that students in the current study received a single
prompt to create an MPM argument. The results indicate that this procedure can help students
whose proficiency or prior knowledge matches the difficulty level of the learning task to become
aware of a misconception and develop conceptual understanding (i.e., by self-explaining and
integrating the constituent propositions). Taking the third and fourth limitation of the current
study together, in future studies the instructional format (i.e., explaining in their own words and
creating an MPM argument) should be a between-subjects factor consisting of three conditions,
namely a control condition in which students explain in their own words, an MPM condition in
which the student receives a single prompt to create an MPM argument and a third condition in
which the student receives a number of prompts to work this way or receives the instruction to
try to formulate more MPM arguments for the same learning task.

The students in the current study did not have a stake in the outcome. A possible consequence is
that they may not have tried as hard as students would have if they had a stake in the outcome
(e.g., a grade on their results). Therefore, a fifth limitation may be students’ learning outcomes in
our study were lower than learning outcomes in the educational practice. Finally, as the students
in the current study were selected on the basis of their performance on the subject matter, they
were not novices. On the one hand, given the findings with regard to the students’ proficiency in
statistics, some studies should contrast the instructional formats for a larger number of tasks,
varying in difficulty level, for different levels of proficiency or prior knowledge. On the other
hand, since MPM aims to both guide novices into a complex knowledge domain like statistics
and help other students to develop a better (conceptual) understanding of the domain, other
studies should use novices (i.e., no prior knowledge about the topic whatsoever) as participants
in order to determine whether they can profit from MPM as well. In the latter case, the learning
tasks to be constructed need to be relatively easy, since the current study has shown that MPM
can only be fruitful if the learning tasks match the students’ prior knowledge of the topic.

MPM is a concrete instructional method for the statistics knowledge domain. In this article, we
present task- and student-related factors influencing students’ ability to learn from an MPM
learning task (i.e., statistics proficiency level, subject matter, the number of propositions in the
learning task, and the instructions). It is now important to examine each of these factors in
subsequent experimental studies.
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Appendix
Questions and propositions used

Descriptive statistics, learning task 1

See the cross table below for the association between gender and hair color in a population, in
which only three colors of hair exist: blond, brown, and black.

Female Male
Blond 45 60
Brown 75 100
Black 30 40
Total 150 200

In this population, for both men and women the univariate distribution for hair color is: 30%
blond, 50% brown and 20% black.

Hypothesis:
From the information it can be concluded that in this population, there is no association between
gender and hair color.

Questions:

[1] What is the marginal distribution of a variable?

[2] What is the conditional distribution of a variable?

[3] When can we say there is an association between two categorical variables?

Descriptive statistics, learning task 2

The histogram below shows the distribution of a variable x. The arithmetic mean of this
distribution equals 5 and its standard deviation is 2.12, hence the length of the interval
‘arithmetic mean plus or minus one time the standard deviation’ equals 4.24. The first quartile
(Qy) equals 3.5, the third quartile (Q1) equals 6.5.
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Frequency

T
0.00 2.00 4.00 6.00 8.00 10.00

Hypothesis:
For this distribution of variable x, the interval ‘arithmetic mean plus or minus one time the
standard deviation’ contains more than 50% of the values.

Questions:

[1] How is the interquartile range (IQR) computed from the values of Q; and Q3?

[2] What range of values is represented by the IQR?

[3] What is the definition of the median?

[4] What can be said about median and arithmetic mean in the case of a perfectly symmetrical
distribution?

Descriptive statistics, learning task 3

The scatterplot below is about the association between two variables x and y. For this
distribution, the correlation coefficient ryy is equal to .03.
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Hypothesis:
In this case, the correlation coefficient ry, does not give a good summary of the association
between x and y.

Questions:

[1] What is expressed by the correlation coefficient ry,?

[2] What values can the correlation coefficient r,, have?

[3] What is an outlier in a scatterplot?

[4] How can an outlier influence the value of the correlation coefficient ry,?

[5] If the association between two variables x and y is non-linear, what can be said about the
value of the correlation coefficient ry,?

Basic inferential statistics, learning task 1

Suppose we are interested in the average neuroticism score in a certain population. We draw a
random sample of N = 40 from that population. Neuroticism was measured on a scale ranging
from 0 to 38. The average of the 40 neuroticism scores was equal to 25.

Hypothesis:
The information presented above enables us to express the expected value of the sample mean in
a number.

Questions:

[1] What is a sampling distribution?

[2] What is meant by the expected mean of a random variable?
[3] What parameter equals the expected mean?

Basic inferential statistics, learning task 2
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Imagine we test a one-sided hypothesis, our test statistic has a certain value, and the
accompanying P-value equals .07. Our significance level is .05.

Hypothesis:
The P-value of .07 does not give rise to a Type | error, but does give rise to a Type Il error.

Questions:

[1] What is a P-value?

[2] What is meant by significance level?
[3] What is a Type I error?

[4] What is a Type Il error?

Basic inferential statistics, learning task 3

Hypothesis:
If the value of our test statistic exceeds the critical value, the P-value is smaller than the
significance level.

Questions:

[1] What is a test statistic?

[2] What is a sampling distribution?

[3] What is a P-value?

[4] What is meant by significance level?

[5] What is meant by critical value in the context of hypothesis testing?

References

Aleven, V., & Koedinger, K. R. (2002). An effective metacognitive strategy: Learning by doing
and explaining with a computer-based cognitive tutor. Cognitive Science, 26, 147-179.

Broers, N. J., & Imbos, Tj. (2005). Charting and manipulating propositions as methods to
promote self-explanation in the study of statistics. Learning and instruction, 15, 517-538.

Broers, N. J., Mur, M. C., & Bude, L. (2005). Directed self-explanation in the study of statistics.
In G. Burrill & M. Camden (Eds.) Curricular development in statistics educaiton (pp. 21-35).
Voorburg, The Netherlands: International Statistical Institute.

Broers, N. J. (2008). “Helping students to build a conceptual understanding of elementary
statistics,” The American Statistician, 62, 1-6.

DeLoach, L. J., Higgins, M. S., Caplan, A. B., & Stiff, J. L. (1998). “The visual analogue scale in

the immediate postoperative period: intrasubject variability and correlation with a numeric
scale.” Anesthesia & Analgesia, 86, 102-106.

21



Journal of Statistics Education, Volume 19, Number 1 (2011)

Fischer, F. (2002). Gemeinsame Wissenskonstruktion — Theoretische und methodologische
Aspekte [Joint knowledge construction — Theoretical and methodological aspects].
Psychologische Rundschau, 53, 119-134.

Gallacher, E., Bijur, P. E., Latimer, C., & Silver, W. (2002). “Reliability and validity of a visual
analog scale for acute abdominal pain in the ED.” American Journal of Emergency Medicine, 20,
287-290.

Huberty, C. J., Dresden, J., & Bak, B. (1993). “Relations among dimensions of statistical
knowledge,” Educational and Psychological Measurement, 53, 523-532.

Kalyuga, S. (2009). “Knowledge elaboration: a cognitive load perspective,” Learning and
Instruction, 19, 402-410.

Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). “The expertise reversal effect,”
Educational Psychologist, 38, 23-31.

Knipfer, K., Mayr, E., Zahn, C., Schwan, S., & Hesse, F. W. (2009). Computer support for
knowledge communication in science exhibitions: Novel perspectivecs from research on
collaborative learning. Educational Research Review, 4, 196-2009.

Marshall, S. (1995). Schemas in problem solving. Cambridge: Cambridge University Press.

Moore, D. S., & McCabe, G. P. (2009). Introduction to the practice of statistics (6™ ed.), New
York: Freeman.

Myles, P. S., Troedel, S., Boquest, M., & Reeves, M. (1999). “The pain visual analog scale: is it
linear or nonlinear?” Anesthesia & Analgesia, 89, 1517-1520.

Novak, J. D. (2002). Meaningful learning: the essential factor for conceptual change in limited or
inappropriate propositional hierarchies leading to empowerment of learners. Science Education,
86, 548-571.

Paas, F. (1992). “Training strategies for attaining transfer of problem-solving skills in statistics: a
cognitive load approach,” Journal of Educational Psychology, 84, 429-434.

Schnotz, W., & Kuerschner, C. (2007). A reconsideration of cognitive load theory. Educational
Psychology Review, 19, 469-508.

Van Merrienboer, J., & Sweller, J. (2005). “Cognitive load theory and complex learning: recent
developments and future directions,” Educational Psychology Review, 17, 147-177.

Wetzels, S. A. J. (2009). “Individualised strategies for prior knowledge activation [dissertation],”
Netherlands: Interuniversity Centre for Education Research (ICO).

22



Journal of Statistics Education, Volume 19, Number 1 (2011)

Jimmie Leppink

Maastricht University

P.O. Box 616, 6200 MD Maastricht, The Netherlands
|.leppink@maastrichtuniversity.nl

Phone: +31 43 388 2279

Nick J. Broers

Maastricht University

P.O. Box 616, 6200 MD Maastricht, The Netherlands
nick.broers@maastrichtuniversity.nl

Phone: +31 43 388 2274

Tjaart Imbos

Maastricht University

P.O. Box 616, 6200 MD Maastricht, The Netherlands
tjaart.imbos@maastrichtuniversity.nl

Phone: +31 43 388 2434

Cees P. M. van der Vleuten

Maastricht University

P.O. Box 616, 6200 MD Maastricht, The Netherlands
c.vandervleuten@maastrichtuniversity.nl

Phone: +31 43 388 5725

Martijn P. F. Berger

Maastricht University

P.O. Box 616, 6200 MD Maastricht, The Netherlands
martijn.berger@maastrichtuniversity.nl

Phone: +31 43 388 2258

Volume 19 (2011) | Archive | Index | Data Archive | Resources | Editorial Board |

Guidelines for Authors | Guidelines for Data Contributors | Guidelines for Readers/Data

Users | Home Page | Contact JSE | ASA Publications

23


mailto:j.leppink@maastrichtuniversity.nl
mailto:nick.broers@maastrichtuniversity.nl
mailto:tjaart.imbos@maastrichtuniversity.nl
mailto:c.vandervleuten@maastrichtuniversity.nl
mailto:martijn.berger@maastrichtuniversity.nl
http://www.amstat.org/contents_2011.htm
http://www.amstat.org/jse_archive.htm
http://www.amstat.org/jse_index.htm
http://www.amstat.org/jse_data_archive.htm
http://www.amstat.org/jse_info_service.htm
http://www.amstat.org/jse_board.htm
http://www.amstat.org/jse_author_info.htm
http://www.amstat.org/jse_data_contributor_info.htm
http://www.amstat.org/jse_users.htm
http://www.amstat.org/jse_users.htm
http://www.amstat.org/
mailto:journals@amstat.org
http://www.amstat.org/publications/

