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Abstract   
 
For many students meeting, say, the gamma distribution for the first time, it may well turn out to be a 

rather fruitless encounter unless they are immediately able to see an application of this probability model 

to some real-life situation.  With this in mind, we pose here an appealing problem that can be used as the 

basis for a workshop activity introducing, and subsequently encouraging the exploration of, many of the 

well-known continuous distributions in a meaningful way.  We provide suggestions as to how the session 

might be run, discuss any pedagogical issues that arise and highlight particularly interesting features of 

the distributions. 

 

1. Introduction 
 
Consider the following scenario: A group of friends are away camping for the weekend and decide to go 

for a walk after dark.  It is so dark in fact that each of them brings a torch.  They all turn their torches on 

at the start of the walk, head out to some point and then retrace their steps to get back to the tents.  Some 

torches die on the way out, others die on the way back, while some are still shining at the end of the walk.  

A non-trivial and intriguing question is:  How long should their walk be in order that the expected number 

of torches dying out on the return journey is maximized? 

 

In this article we provide a detailed account of a workshop activity, the aim of which was to investigate 

the above problem.  However, before describing both the resulting mathematics and the pedagogical 

issues that arose, I should explain that the idea for this activity did actually come about somewhat by 

accident.  During a recent lesson with one of my classes in which the students were, via some rather 

routine examples from a textbook, familiarizing themselves with the tabulated cumulative distribution 

function of the standard normal random variable )1,0(N~Z , I asked them to find 0q  such that 
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15.0)2(P  qZq .  Immediately after having posed this question, it occurred to me that there might 

not actually be a solution.  This led me to consider the problem of finding the largest number p such that 

pqZq  )2(P  for some value of 0q . 

 

Using the result 
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from Spiegel (1963, p. 163), and noting that the pdf for the standard normal distribution is given by 

 

 2

2
1exp

2

1
)( xxf 


,  x , 

we obtain 

      2exp2exp2
2

1

2

2exp 222 

 

2

xxdt
t

dx

d x

x






. 

 

From this it follows, on equating the expression on the right to zero, that )2(P qZq   possesses a 

stationary point when 
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To show that this probability is indeed maximized for the above value of q, we obtain the second 

derivative and evaluate it at this point to give  
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In this case we find that 1613.0)2(P  qZq , so the task I set my class of finding 0q  such that 

15.0)2(P  qZq  did indeed have a solution.  The problem concerning the torches evolved from this 

relatively simple question. 

 

In order to help set the scene mathematically, we offer here several additional comments regarding our 

probabilistic scenario, and define some notation that will be adopted in later sections.  Let X be the 

random variable representing, in some appropriate unit of time, the „longevity‟ of a torch.  (It is clear that 

a number of modeling assumptions need to be made regarding X, but consideration of these is postponed 

until the following section.)  From the preceding calculation we know that if X followed the standard 

normal distribution, then, in order to maximize the expected number of torches dying out on the return 

journey, the total length of the walk (in hours, say) would need to be 3596.12 q .  The standard normal 

distribution is of course totally unsuitable for modeling the longevity of a torch.  In the workshop we 

considered a number of other well-known continuous distributions (as given in Grimmett and Stirzaker 

(2001, pp. 95-97), for example), each of which may or may not be deemed a potential candidate for X.  

Although our problem concerns finding 0q  such that )2(P qXq   is maximized, we do, for the sake 

of generality, maximize )(P kqXq   subject to 0q  and 1k .  Where possible, exact expressions for 

these maxima are obtained in terms of k and the distribution parameters.  The limiting cases that arise as 

1k  and k  are also considered. 
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2.  The pedagogical aspect 
 
I ran this session for a class of advanced undergraduates, each of whom attended on a voluntary basis.  

They were put into small groups in order to create opportunities for discussion, peer teaching and 

collaboration throughout the session.  This particular set of students had already covered a first course in 

statistics and a more advanced calculus course.  They were aware of the common continuous 

distributions, having looked at them briefly in the statistics course.  However, they possessed neither real 

insight into specific mathematical properties of these distributions nor any experience with regard to 

assessing their suitability for a particular modeling situation. 

 

In order to facilitate high quality learning, it seemed, bearing in mind the student-centered and relatively 

relaxed nature of the workshop setting, that the following points advocated by Angelo and Cross (1993) 

were particularly important: 

 To help make their lessons successful, teachers must state their aims and objectives explicitly, 

and then obtain clear and specific feedback in order to ascertain the extent to which these aims 

and objectives are being achieved. 

 For the students‟ learning, it is essential that they receive appropriate and focused feedback from 

the teacher. 

 Teachers reflect on the learning issues encountered in the classroom and then consider how 

improvements may be made in order to enhance the students‟ learning experiences in future 

lessons. 

 

To provide some initial impetus and motivation, the problem was introduced by way of a practical 

activity.  We recreated scaled-down journeys by walking across the classroom and back.  In order to 

simulate the lifetime of each torch, I used the statistical software R (2004) to sample from a Weibull 

distribution; more on specific distributions in due course.  After having generated the torch lifetimes for 

each of the students, they were set off on their journeys one at a time.  A clock indicated when the torch 

of a particular student had died out, at which point I asked them to stop where they were and to remain 

facing in the direction they had been walking.  In this manner we were able to see exactly where each of 

the torches had failed on the journey. 

 

In the initial simulation, I set the parameters so that the majority of torches died on the return journey, 

with a few failing on the way out and a few still shining at the end.  Further simulations were carried out, 

from which it was possible to see how the distribution of the points at which the torches died changed 

dramatically as the parameters of the distribution were varied.  Indeed, I have found that the visual impact 

of such a demonstration does allow even the weaker students fully to understand the nature of the 

problem under consideration.  After this introduction, the aims of the workshop were made explicit to the 

students.  These were: 

 To nominate, with justification, a suitable probability model for the longevity of the torch. 

 To select appropriate parameter values and hence calculate the length of the walk such that the 

expected number of torches dying out on the return journey is maximized? 

 

There are of course a number of assumptions that need to be made when modeling this situation, and I 

next elicited, via verbal prompts, a number of these from the students.  It was agreed, for the sake of 

simplicity, that the lifetime of each torch should follow the same continuous distribution, whatever that 

may be.  We might thus suppose that each torch is of the same type, having identical and previously-

unused bulbs and batteries.  The students next decided that it would be sensible to assume that the 

outward journey should take exactly the same time as the return journey.  They also acknowledged that 

one slight difficulty was the fact that torches tend to dim gradually as batteries lose their strength, and that 
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it might be rather difficult to say exactly when a torch is considered „dead‟.  We chose, however, to 

assume that it is indeed possible to state such times precisely.  Finally, in order to proceed with any 

calculations, a suitable probability distribution is required to model the longevity of a torch.  This is 

something we consider in detail in Section 3. 

 

At this early phase of the workshop it was necessary to map out and construct some key learning paths, 

given the students‟ base knowledge stated at the beginning of this section. Indeed, the following set of 

workshop objectives give an idea of how these learning paths may be created.  The students needed first 

to reacquaint themselves with the notion of continuous random variables, and to recall how, via their pdfs, 

they may be used to model quantities such as the lifetime of a randomly-chosen torch.  The next step was 

to gain confidence in using pdfs to calculate probabilities associated with random variables, and to be able 

to interpret the mean and variance of a particular distribution.  They needed also to consider how the 

shapes of the various pdfs are transformed as the parameters are varied.  Some independent research 

could then take place into common applications of each of the distributions under consideration, creating 

the possibility for informed decisions to be made about the suitability of each of these distributions with 

regard to modeling our particular probabilistic scenario.  Finally, the students would also be required to 

employ the use of more advanced calculus in order to obtain and interpret results associated with our 

maximization problem.  To aid some of the above, I ensured that computers with mathematical software 

and internet access were made available to the students. 

 

Although I did not wish unduly to influence the progression of the workshop, I felt it important that I 

provided early and detailed feedback in order to avoid the students wasting too much time pursuing 

fruitless lines of enquiry.  If there was a common misconception or error I would stop the workshop and 

facilitate a whole-class discussion. Otherwise, I would speak to individuals or groups as I walked round, 

assessing students either via straightforward knowledge-based questions such as “To which family of 

distributions might we consider the exponential distribution to belong?” or by way of more probing 

questions: “Can you provide an interpretation of what someone means when they say that the mean of the 

Cauchy distribution does not exist?”, for example.  The session ended with each group giving a 

presentation of their findings.  This served the dual purpose of both giving the students time to clarify 

their findings in their own minds and of allowing me to assess the extent of their learning. 

 

In the following three sections we provide a distillation of the mathematics that took place in the 

classroom subsequent to the introductory demonstration, discussion, consolidation, learning and research. 

 

3. The potential candidates 
 

The students were asked to consider the suitability of several well-known continuous distributions with 

regard to modeling the longevity of a torch, and subsequently to nominate the one they deemed most 

appropriate.  In this section the candidate distributions are grouped according to their families; for 

example, the exponential distribution is actually a special case of the gamma distribution and is thus 

considered to be in that family.  We denote, for a given family of distributions (indexed by some integer 

m), the value of q such that )(P kqXq   is maximized by )(kqm .  The corresponding maximum value 

of )(P kqXq   is given by )(kAm . 

 

Whilst it was feasible for all of the students to consider the aptness of each of the distributions discussed 

here, it was clearly not possible, in a single session, for each of them to calculate both )(kqm  and )(kAm  

for each family.  Besides, the focus of the workshop was on acquiring statistical knowledge and 

understanding rather than on developing technical skill with regard to calculus; indeed, our particular 

problem served merely as a contextual, and hence motivational, element to the workshop.  Thus, in order 
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to be able to achieve the aims stated in the previous section, each group was given responsibility for the 

calculation of )(kqm
 and )(kAm

 for just two families of distributions.  These results were then shared 

amongst the groups towards the end of the session. 

 

I found it useful both to prompt students at appropriate points and to ask probing questions, thereby 

getting them to think a little more deeply about the characteristics and the suitability, with respect to our 

scenario, of each of the distributions.  Therefore, at the end of some of the following subsections, 

questions are provided that might be put to students in this regard. 

 

The normal distribution 

The random variable  2,N~ X , of which )1,0(N~Z  is a special case, has pdf given by 
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On using (1) we find, after some manipulation, that 
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The normal distribution might be regarded as one of the core elements of statistics.  It is commonly used 

to model the distribution of measurement errors in experimental results or the variation of component 

dimensions in manufacturing processes.  Not only is the normal distribution used extensively in 

modeling, but it also forms the basis of much statistical theory.  It was one of the first distributions to 

acquire a formal definition, originating from the work of Abraham de Moivre in the early eighteenth 

century.  Under certain conditions, the normal distribution can also be used as an approximation for other 

distributions; even discrete ones, such as the binomial or Poisson.  It is a continuous probability 

distribution describing data that clusters around some mean value in a symmetric fashion. The graph of its 

pdf is bell-shaped, with the peak at the mean.   

 

Questions: 

Might this provide a realistic model to use in the situation we are currently considering? 

Can you think of a reason why some might not deem it suitable for modeling the longevity of a torch? 

Why, in practice, would the fact that X can take negative values not cause any problems? 

 

Gamma distribution 

Next, if ),(~ tX   then it has pdf 
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where )(t  is the gamma function defined by 
 
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http://en.wikipedia.org/wiki/Probability_distribution
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For the particular case in which 2t  (see Figure 1, where 1 ) we find, after a considerable amount of 

simplification, that 
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Figure 1:  The gamma distribution with  2t  and 1 . 

 
The particular case for which 1t  results in the exponential distribution (see Figure 2, where 1  once 

more), given by 
xexf  )(
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This distribution is used to model times between events that occur randomly in time, but at a constant 

average rate.  As we might expect from an intuitive point of view, 

 

1
11

)(
1

1

2











k

kk

k
kA  as k . 

 

We can think of   and t  as determining the „scale‟ and „shape‟ respectively of the gamma distribution.  

Although the parameter t  can take non-integer values, when it is a positive integer the resultant 

distribution describes the sum of t  exponential random variables, each independently and identically 

distributed with mean  .  Note also that special cases of the gamma distribution lead to another 

distribution students may be familiar with; the chi-squared distribution.  
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Figure 2:  The exponential distribution (the gamma distribution for the case 1t ). 

 

The gamma distribution has, as a consequence of the fact that it may in certain cases be regarded as the 

sum of one or more exponentially distributed variables, applications associated with intervals between 

events.  Examples of its use include queuing models, the flow of items through manufacturing and 

distribution processes, and the load on web servers and the many and varied forms of telephone 

exchanges. Also, owing to its moderately skewed profile, it can be used as a probability model in a range 

of disciplines, including climatology, where it is a workable model for rainfall, and financial services, 

where it has been used for modeling insurance claims and the size of loan defaults. 

 

A good example demonstrating the application of the gamma distribution to a real-life situation is given 

in Jones (2009).  The author considers the problem of modeling the time it takes to recruit patients into a 

clinical trial.  This is a very important consideration in any clinical trial since it may have a major impact 

on whether or not the drug development program completes on time.  In the model it is assumed that the 

interval of time between recruiting one patient and the next has an exponential distribution; bearing in 

mind the opening comment in the previous paragraph, the connection with the gamma distribution is now 

obvious.  In the aforementioned article it is explained how simple statistical models involving the gamma 

distribution can be used to predict the time to complete recruitment. 

 

Incidentally, the exponential distribution is rather special in that it is the only continuous distribution 

possessing the so-called memoryless property; see Griffiths (2006) for an explanation.  This is something 

else that is certainly worth exploring with the students. 

 

Questions: 

For the particular case in which 2t , note that )(2 kA  is independent of the parameter .  Can you 

provide a simple mathematical explanation of this fact? 

Is this also true for other values of t? 

What exactly do we mean by the „memoryless property‟? 

 

Beta distribution 

We now consider ),(~ baX   with pdf 
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For the case where 2a  is an integer and 2b  it is possible to show that 
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Note that here 
2
1

3 )( kq  and 1)2(3 A  as a .  We can see these results in the light of the graphs of 

our distribution as a increases.  The shapes of the distributions for 2a , 3a  and 6a  are illustrated 

in Figures 3, 4 and 5 respectively. 

 

)(
3

xf  

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 
Figure 3:  The beta distribution with 2a  and 2b . 
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Figure 4:  The beta distribution with 3a  and 2b . 
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Figure 5:  The beta distribution with 6a  and 2b . 

 

The special case of the beta distribution for which 1 ba  gives us the continuous uniform distribution 

with pdf 1)(3 xf , 10  x .  It is clear now that 
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The beta distribution models events which are constrained to take place within an interval defined by a 

minimum and maximum value.  For this reason, it is sometimes used in project planning to describe the 

time to completion of a task.   

 

Question: 

Do the above facts indicate that the beta distribution is suitable for our purposes, or otherwise? 

 

Cauchy distribution 

In this case X has the following pdf: 
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The Cauchy distribution is named after the nineteenth mathematician Augustin Cauchy.  It is both 

symmetrical and heavy-tailed.  Heavy-tailed means that a high proportion of the population is comprised 

of extreme values.  In fact, this distribution is so heavy-tailed that its mean does not exist!  It turns out 

there is no analytical definition of moment-based properties such as the mean or variance.  The Cauchy 

distribution does, however, possess a median, and this can serve as the location parameter. 

 

An application of the Cauchy distribution occurs in software testing, where it is necessary to use datasets 

containing a few extreme values that could potentially trigger some adverse reaction.  This distribution is 

clearly not suitable, in its present form at least, for modeling the longevity of a torch.   

 

Questions: 

Might we consider this a feasible probability model if it were translated so that the median was positive? 

If not, then what reason could you give? 

 
    

http://en.wikipedia.org/wiki/Augustin_Cauchy
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Figure 6:  The Cauchy distribution. 

 

Weibull distribution 
This distribution has pdf 
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This distribution, named after the Swedish engineer Wallodi Weibull, is often used to model time to 

failure of manufactured items and has become one of the principal tools of reliability engineering and 

survival analysis.  Its applications have in fact expanded somewhat, and now include finance and 

climatology.  Figure 7 shows an example of a Weibull distribution.   
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Figure 7:  The Weibull distribution with  1  and 25 . 

 

 

Questions: 

From the point of view of mathematical transformations of functions, what roles do the two parameters   

and   play here? 

What features of this distribution might indicate that it is indeed a potentially strong candidate? 

 

Log-normal distribution 

The final distribution we consider here has pdf 
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It arises from the standard normal distribution )1,0(N~Z  on considering the random variable ZeX  .  

This distribution is depicted in Figure 8.  The log-normal distribution describes many naturally occurring 

populations.  In the mining and extraction industries it has been observed that where the value of an item 

is proportional to size, the population is probably log-normally distributed, with few valuable items and 

many non-commercial ones.  An application of this distribution with regard to the purchasing power of 

earnings worldwide appeared in Cooper (2009).  It is also studied in a recent JSE article; see Olsson 

(2005). 
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Figure 8:  The log-normal distribution. 

 

 

On using (1) we see that our probability is maximized when 
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This gives 22 )(log)(log xkx  , and hence kkq 1)(
6

 .  Note that this is the same as that for the Cauchy 

distribution. 

 

 

4. Further results on limiting values 
 
As we would expect, 1)( kA  as k  for each of the distributions whose domain is either 0x  or 

0x .  However, it is more interesting to consider what happens to )(kq  as 1k .  Let us denote this 

limiting value by )1( q .  If k is close to 1 then, for a continuous random variable X with pdf f(x), we have 

that 

 

  )1)(()()(P  kqqfqkqqfkqXq , 

 

from which we see that in order to calculate )1( q  we need to maximize )(xxf  with respect to x.  For 

example, considering the standard normal distribution: 

 

     2

2
122

2
1

1
exp)1(

2

1
exp

2
)( xxx

x

dx

d
xxf

dx

d













, 

 

from which we obtain 1)1(
1

q .  This really is rather interesting as the pdf of )1,0(N~X  has a point of 

inflection at 1x .  This „coincidence‟ has occurred since )(11 xxfdxdf   so that 
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 )(
1

1

2

1

2

xxf
dx

d

dx

df

dx

d

dx

fd









 . 

 

In fact, as is easily checked, such a coincidence also occurs for the Cauchy distribution, defined via 

)(
4

xf .  To show that this will not generally be the case we just need to consider the gamma distribution, 

given by )(
2

xf .  Here we find that for 21  t  there is a point of inflection at  111  ttx 
 while 

for 2t  there are two points of inflection, one at  111  ttx 
 with the other being at 

 111  ttx 
.  It is also true that tq  )1(

2
, from which it follows that the only occasion on 

which )1(
2

q coincides with a point of inflection is when 2t . 

  

For the Weibull distribution we find that 

 



 


11

5

1

)1(

log
)( 





















k

k
kq  as 1k , 

 

while the points of inflection are given by 

 







1

2

)1)(15()1(3













 
, 

 

for values of   and   such that this expression gives positive real numbers. 

 

5. The issue of uniqueness 
 
To this point all our distributions have possessed unique values of )(kq  for each 1k .  However, this 

will not necessarily always be the case.  The random variable X with pdf kxxf 1)(7  , kex 1 , has 

kkqXq
k

log)(P 1  for keq k1 .  It is also possible to construct pdfs that have exactly two 

distinct values of )(kq  for some 1k .  Indeed, this makes an interesting challenge for the students.  For 

example, the random variable X with the rather contrived piecewise pdf given by 

 










21        )1(

10                  
)(

3
2

3

2

8
xx

x
xf  

 

has    
3
1

2
1 211P  XPX  while all other probabilities of the form )2(P qXq   are less than 

3
1 . 

 

6. Points for discussion 
 
The first point to be made here is that this is very much a tried-and-tested activity; one that does seem to 

engage the participants, helping them to appreciate the fact that there is a little more to the statistical 

process than is sometimes portrayed in textbooks.  The last time I ran such a session, I was struck by the 

number of students saying that they had enjoyed participating simply because of the fact that these 
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potentially abstract notions had been placed in some sort of context for them.  Indeed, the importance of 

presenting new theoretical ideas in context is a recurring theme in Howley (2008).  The workshop setting 

also allows for both collaborative and independent learning to take place.  Furthermore, although this 

activity is very much based on the investigation of pdfs of continuous random variables, it does give 

bright students plenty of scope to explore more advanced areas of calculus, the idea of a limit, special 

functions and even parameter estimation. 

 

It has to be admitted, however, that thus far this has only been carried out with relatively small classes of 

bright undergraduate students.  Although the workshop is potentially highly flexible, it is inevitable that 

some of this flexibility will be lost in situations where classes are particularly large or contain students 

with wide-ranging abilities and experiences.  Another factor that needs to be taken into account is the 

amount of time available.  If time was at a premium, as was the case here, then each group may consider 

in detail just one or two of the aforementioned distributions.  This scenario presents an excellent 

opportunity for peer-teaching to take place, as espoused in Zacharopoulou (2006).  Indeed, our session 

ended with each group providing an account of their solution to the problem for the particular 

distributions they had studied, a coherent argument for or against the use of these distributions to model 

the longevity of a torch and, with justification, a nomination for the most suitable distribution.  There is 

also the possibility for students to continue the work at home.  In this case, matters could be tied up in a 

brief follow-up session. 

 

The final presentations proved to be extremely valuable in terms of the discussion that was generated.  

When considering which of the distributions might be deemed suitable, students soon appreciated, under 

questioning from their peers, the need to be clear about the reasons influencing their choice.  Some of the 

points raised were:  Should we discount distributions taking negative values?  Do we believe that the 

distribution should be skewed rather than symmetric?  Should our random variable be able to take 

arbitrarily large values?  Is anyone of the opinion that none of these distributions would be suitable?  

Some also considered the problem of devising a practical experiment to determine whether or not a 

particular distribution is actually a genuine candidate.  This of course also raises the issue of parameter 

estimation. 

 

The general consensus was that the Weibull distribution would, for some appropriate selection of 

parameter values, be the model of choice for our scenario.  Indeed, experience tends to show that failure 

data can often be well modeled by this distribution, and, for the modeling assumptions stated in Section 2, 

it might thus be deemed suitable.  For the Weibull distribution,   is known as the „shape‟ parameter.  If 

1  then, as already mentioned, we obtain an exponential distribution.  This leads to a failure rate that 

remains constant over time (recall that that the exponential distribution has the „memoryless‟ property).  

When 1  the failure rate decreases as time goes by.  The more plausible situation for the lifetime of a 

torch, however, is that the failure rate increases with time, corresponding to 1 .  This would occur if 

the torch underwent some sort of ageing process, and was more likely to die as time elapsed.  It might be 

argued that this is in fact the case since the filaments of light bulbs both evaporate over time and undergo 

a process known as creep.  For further general information about the Weibull distribution, visit the 

Wikipedia website (2010). 

 

With the first aim of the workshop having been achieved, the students went on to consider the problem of 

calculating the length of the walk such that the expected number of torches dying out on the return 

journey is maximized.  This involved evaluating )2(
5

q  for appropriate values of the scale and shape 

parameters,   and   respectively.  As discussed above, the students decided it would be sensible to 

choose 1 .  There remained the task of choosing an appropriate value of  . 
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Of course, in reality things might not be quite so simple.  Indeed, the removal of one or more of the initial 

assumptions stated in Section 2 would give rise to some challenging modeling problems.  For example, 

rather than assume the longevity of a torch, as a single unit, possesses some well-known continuous 

distribution, we might take account of the fact that the lifetimes of bulbs and batteries would each follow 

their own distributions.  Then, if X and Y are random variables representing the lifetimes of bulbs and 

batteries respectively, the longevity of the torch is given by ],min[ YXW  .  It is quite possible that the 

distributions of X and Y belong to different families.  So, for example, the lifetime of a bulb may follow a 

Weibull distribution, while that of a battery might best be modeled by way of a normal distribution.  

Further complications might arise if X and Y are dependent as random variables.  If the batteries are dying 

out then the bulb will probably be fairly dim, thereby lessening its aging process.  These ideas would 

provide extension material for exceptionally talented students. 

 

There is also much scope for computational work here.  In order to graph the various pdfs or carry out 

appropriate numerical work then Mathematica (2007) and R (2004) provide plenty of options.  Our 

problem also provides an ideal opportunity to conduct Monte-Carlo simulations. 
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