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Abstract

This paper describes three spreadsheet exercises demonstrating the nature and frequency of type
| errors using random number generation. The exercises are designed specifically to address
issues related to testing multiple relations using correlation (Demonstration 1), t tests varying in
sample size (Demonstration 11) and multiple comparisons using analysis of variance
(Demonstration I11). These demonstrations highlight the purpose and application of hypothesis
testing and teach students the dangers of data dredging and a posteriori hypothesis generation.

1. Introduction

Undergraduates and graduate students across many fields of the social, biological and physical
sciences are taught null hypothesis significance testing (NHST) as part of most introductory
statistics courses. A hybrid of procedures suggested by Fisher (1926; 1956) and Neyman and E.
Pearson (1928/1967), researchers identify a null hypothesis (Hg) of no relation or difference
between one variable (i.e., the independent variable that a researcher manipulates) and another
variable (i.e., the dependent variable that the researcher measures as a function of a change in the
independent variable). This null hypothesis is tested against an alternative hypothesis (Ha) that a
statistically significant relation or difference is observed between the dependent and independent
variables using an inferential statistical test, such as a t test or ANOVA. A relation or difference
between variables is considered statistically significant if there is strong evidence that the
observed relation or difference is unlikely to be due to chance. In the NHST most commonly
practiced in applied fields, researchers reject the null hypothesis when the probability of
incorrectly rejecting a true null hypothesis falls beneath an established criterion level alpha (o).
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Alpha represents the maximum level that the researcher will accept for incorrectly rejecting the
null hypothesis when the null is true, which by convention (in some fields, and by some
researchers) is set at five percent." Once the researcher finds evidence for a significant relation or
difference between an independent and dependent variable, the null hypothesis can be rejected,
and the alternative hypothesis is assumed to be true.

NHST is not without its critics (e.g., Oakes, 1986; Falk & Greenbaum, 1995; Gigerenzer, 2004;
Loftus, 1991; Killeen, 2005) and controversies over the practice and application of inferential
statistics exist in many disciplines. Rather than engage in the debate over the utility or futility of
NHST, this paper describes three exercises and associated spreadsheets that | have found
valuable in teaching NHST, and specifically about the problem of rejecting the null hypothesis
when the null is true. Through the use of the three simple spreadsheet demonstrations described
below, students can learn to avoid common mistakes that arise in the design of experiments and
the analysis of data.

2. Inferential statistics and the two types of errors

Around the time students learn inferential statistics, many teachers and books elaborate upon
four possible outcomes in a hypothesis testing situation. Figure 1 depicts my own version of a
common figure that can be found in various forms in different textbooks (e.g., Davis & Smith,
2004, p. 208; Thorn & Giesen, 2002, p. 194; Steinberg, 2008, p. 149; Vernoy & Kyle, 2001, p.
270; Wilson, 2004, p. 109).

Figure 1: My figure demonstrating the consequences of type | and Il errors.

Hypothesis Reality
Null Hypothesis Alternative Hypothesis is True
is True
S ®
Null Hypothesis is Accurate: But unfortunate! Type Il Error: Bad!
True (Back to the drawing board!) (Serious, but not deadly!)
n l-a B
=3
g g ®
- Alternative Type | Error: Very Bad! Accurate: Publish and prosper!
Hypothesis is True (Abandon all hope, ye who (Have a great career!)
enter here!) 1-B
o

L1t is important to emphasize that alpha is a criterion level set by researchers, and should only be equated with the
probability of making a type | error when the null hypothesis is true. When the null hypothesis is not true, there is
no chance of a Type I error. Of course, the reason that we conduct a hypothesis test is because we do not know the
truth of the null hypothesis.”
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The top axis represents the actual state of the world (i.e., the “correct” decision if we could
accurately measure all members of a population), and the side axis represents the conclusion
based on observed data (the sample randomly selected from the population). Assuming that the
alternative hypothesis is more theoretically interesting than the null hypothesis, the best outcome
is to find evidence to reject the null hypothesis when the alternative hypothesis is actually true.
This results in an interesting and publishable result. Slightly unfortunate is finding no evidence
to reject the null hypothesis when the null is actually true. This outcome is not bad either because
it is accurate, yet it may be unfortunate, as it implies returning to the drawing board and
designing a new study.

Then there are the two errors. One error is failing to find evidence to reject the null hypothesis
when the alternative hypothesis is true. Known as a type Il error, such errors are bad for science
in that an actual result never sees the light of day. The other type of error is generally considered
more detrimental: finding evidence to reject the null hypothesis when the null is true, known as a
type | error. Such errors are bad for science because they potentially allow a false result to enter
the literature. Other researchers may unsuccessfully try to replicate the false finding, wasting
crucial resources and time. Once a scholar develops a reputation for non-replication, a career is
tarnished, and the once-earnest scientist may end up unemployed and destitute in the poorhouse
alongside characters from a Charles Dickens novel, themselves having made similar type |
errors. This is why my version of the error chart (Figure 1) uses a poison symbol to represent
type | errors.

Type | errors arise because chance perturbations in the sampling process sometimes accumulate
in a single sample to provide false evidence for a relation or difference where none actually
exists in the population. However, psychologists have long understood that people experience
difficulty understanding chance or random processes such as those involved in inferential
statistics (e.g., Falk & Konold, 1997; Nickerson, 2002; Mlodinow, 2008). The inability to
understand chance affects various psychological processes, producing cognitive biases such as in
the perception of illusory correlation in social and non-social cognitive processes (Chapman,
1967; Hamilton & Gifford, 1976; Tversky & Kahneman, 1973). The mind seems to crave
certainty, and the fact that random processes are part of hypothesis testing may be one of the
reasons students experience difficulty comprehending the subject.

3. Researchers (Mis)understanding the frequency of type I errors

Students learn that the probability of making a type I error is set by the researcher or by an
established convention set by the field. Psychologists, for instance, generally set their acceptable
level of risk for making a type I error at five percent (.05). If researchers set their level of
comfort over making a type | error (alpha) to the conventional level of .05, they will have a 5
percent chance of rejecting the null hypothesis when the null is true every time they conduct an
analysis testing a true null hypothesis. In my own courses, | teach students about different types
of error rates (family-wise, experiment-wise), and that in a study testing k independent
comparisons or relations, the experiment-wise error rate can be calculated as 1 — (1 — oper
comparison)k. And my students typically nod in agreement, hand in homework in which they
correctly calculate the different types of error rates since the formula are so simple, and | assume
they understood the issue and move on from there.
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In a recent graduate statistics course, I also assigned a hands-on project in which students
designed and carried out their own research study. Prior literature demonstrates that carrying out
one’s own unique investigation is often an effective strategy for learning in statistics courses
(e.g., Martinez-Dawson, 2003; Vaughan, 2003) and students develop important skills about
carrying out an entire project from start to finish. To my consternation and chagrin, a
considerable proportion of the students handed in project proposals similar to the following: “I
propose to use a questionnaire to collect data on 7 personality factors, 7 demographic variables,
and 6 Likert scale survey questions.” In the proposed analysis section, the student wrote, “I plan
to use SPSS to perform bivariate correlation coefficients on the variables and report which ones
are significant.” And at that point, I started pulling out my hair, because apparently a
considerable number of students failed to understand the fundamental point about the frequency
of type 1 errors across multiple comparisons, such as those involved in a 20 x 20 correlation
matrix.

Frustrated, I returned to my class and revisited the issue of hypothesis testing. | explained once
again the issue of type | errors, multiple comparisons, and after the fact (a posteriori) hypothesis
generation. Because Gigerenzer and Hoffrage (1995) demonstrate that probabilities expressed as
natural frequencies (1 in 20) are more comprehendible than those expressed as relative
frequencies (.05), | altered the message a bit. | explained that setting alpha at .05 means that even
if the null hypothesis is true and there is no correlation between any of the variables that 1 in 20
tests are likely to return type I errors. In conducting a 20 X 20 correlation matrix, there are 195
separate hypotheses tested (discounting the symmetry along the diagonal), and 195/20 = 10, so
that they could expect at least 10 type I errors in such a study design if there is no correlation
between any of the variables. Their reactions...

Student 1: “Well, that may be true, but I will only interpret those that are significant and
that also make sense. I'll just ignore the ones for which I can’t come up with a good
explanation.”

Student 2: “But if I do things the way you suggest, | would never get anything published,
because how do I know before the fact what relations are supposed to be significant?”
Student 3: “Isn 't this what everyone does?”

Student 4: “This is what Professor X (tenured member of the department) told me to do.”

After pulling out what was left of my hair, | decided that the students needed an actual
demonstration to learn the nature and frequency of real type I errors if one were to follow such
dubious research practices.

3.1. Demonstration 1: Data dredging and correlations using (secret) random
data

For the next class, I developed an Excel spreadsheet consisting of a “dataset” of 30
“participants.” I included 20 “variables” such as income (a demographic variable), the often-used
“Big Five” personality traits (Openness to Experience, Conscientiousness, Extraversion,
Agreeableness, Neuroticism), data from a hypothetical “Life Satisfaction Scale” (Satisfaction
with Marriage, Job, Health, Family, Friends, Sexuality), and a measure of “Emotional
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Experience” (Calm, Anger, Happiness, Sadness, Fear, Disgust, Loneliness, and Annoyance).? |
explained, “In this dataset, income is coded in ten thousands, the satisfaction and personality
ratings are on a Likert scale ranging from 0 (does not describe me at all) to 10 (describes me very
well), and the emotional experience scale is on a Likert scale ranging from 0 (feel this emotion
infrequently) to 10 (feel this emotion frequently). (This spreadsheet is available as an Excel file
titled “TypelErrorExercise.x|s” which may be obtained by following the link here or at the end
of this article).

What | did not tell them was that the participants and data were merely the =rand() function in
excel, with the decimal points neatly cleaned away by formatting the cells to show only integers,
and the orders of magnitude altered by multiplying the random decimals produced by the rand
function by 10 or 100. So although the data appeared to be actual data, the dataset consisted only
of a set of 20 lists of random numbers. On a second worksheet, (correlation) | provided the
resulting 20 x 20 correlation matrix, as well as the resulting p values associated with the
correlations (based on the t test formula for determining the significance of a correlation
coefficient). | set up the conditional formatting of the spreadsheet so that p values significant at
the .01 level would show up red, and those significant at the .05 level would show up blue.

Because the excel sheet is programmed so that typing anything into any cell re-randomizes the
data, for the following demonstration | avoided changing the value of any cells.

In class, | showed the students the Excel sheet on a projector. That randomization contained 5
correlations significant at the .01 level and 10 significant at the .05 level. I tell the students that
we would conduct a class exercise in interpreting the results of a correlation matrix. After
explaining the variables, | asked them to interpret the significant relations based on the results. |
pointed to student 1.

Student 1: “It looks like people who are extraverted are likely to have higher incomes, as
the correlation is .54. That makes sense, because outward focused people probably are
better at getting better jobs than introverted people, who probably lack people skills
necessary to secure a position.”

Student 2: “Conscientious people are more likely to be satisfied by their marriage, at .63.
That’s logical, because conscientious people are probably more likely to be sensitive to
the needs of their spouses than non-conscientious people, resulting in higher marital
satisfaction.”

Student 3: “People experiencing the emotion of annoyance right now are positively
correlated at .34 with being neurotic, that makes sense, because neurotic people are
probably worried, and in worrying all the time are annoyed all the time as well.”
Student 4: “Experiencing fear is negatively related with experiencing calm, which you’'d
predict, since if you re afraid, you re not exactly calm.”

% The courses in which | have used this demonstration were psychology classes. In a statistics course for other
disciplines, the spreadsheet could be easily altered to address specific issues addressed by that discipline. For
instance, for economists, the numbers could represent economic indicators of a sample of stocks, or for biologists,
various biometric variables about a sample of animals. Also, the number of fake participants can be increased or
decreased at the instructor’s discretion.
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We went through all the significant correlations. Of course, a posteriori, it is possible to come up
with a hypothesis that explains any relation, as twisted as the prediction might be. For instance,
one of the students ‘hypothesized’ that the strong positive relation between the personality trait
of conscientiousness and the emotional experience of anger (r = .78) was readily explained away
as resulting from the fact that conscientious people might often feel anger at having to be nice all
the time, so that outwardly they might be conscientious, but inwardly they are furious at having
to be nice all the time. Of course that makes sense!

To bring the demonstration to a close, after we explained away all the significant correlations, |
go back to the original data and tell them, “I have a confession to make. Although I told you this
was actual data, I wasn’t completely honest. Each of these data points is simply a random
number.” I show them that the original data sheet consists of only =rand() functions. | further
demonstrate this by hitting the delete key in an empty cell, which changes the data and results in
a new set of spurious correlations. | have them try and interpret the new correlations again,
which are just as “meaningful” as the ones they had just finished interpreting. Their reactions
were classic!

Student 1: “No! You re fooling us.”

Student 2: “Impossible! But why are all these so significant if it is just random???”
Student 3: “No way! There is a correlation of .93 in there! That can’t be random!”
Student 4: “Then why are all those correlations significant? It’s not random, something
else must be going on.”

“No!” I exclaimed. “What you have witnessed is simply the power of chance and the alarming
frequency of type I errors if you are comfortable with testing 195 separate hypotheses while
setting alpha at .05 and willing to generate hypotheses for significant relations after the fact.
Don’t do this or you’re guaranteed to make type I errors and publish bad research!”

| then sent the students home with the spreadsheet and the following assignment:

You now have the same spreadsheet we used in class. You now know that the data is simply
random numbers. | would like you to simply count the number of significant correlations at the
.05 or higher level for 20 re-randomizations of the data. You can re-randomize the data simply
by clicking on an empty cell in the spreadsheet and typing the delete key. Repeat this 20 times,
each time recording the number of significant correlations you find in the resulting simulation.
Calculate the average number of significant correlations, and also provide the minimum and
maximum number of significant correlations that you found across the 20 randomizations.
Please write a paragraph reflecting upon how this exercise helped you understand the difference
between hypothesis testing and data dredging. Also, reflect upon why it is dangerous to generate
hypotheses after running a study and analyzing data. Also, reflect upon what assumptions are
violated by the data as described on the spreadsheet, for instance, is it correct to assume that
personality traits are normally distributed? How will you deal with these problems in the future?

Figure 2 presents histograms of the average number of significant correlations (type 1 errors)
across the class of 20 students, as well as the minimum and maximum numbers of significant
correlations. Recall that the formula for the experiment-wise error rate predicts one would expect
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about ten type | errors of the 195 hypotheses being tested. The average for the class was 10.35
(SE = 0.45), which is spot on.

Figure 2: Histogram depicting the average, minimum and maximum numbers of type | errors (with alpha set to .05)
from the random number correlation matrix of 195 biserial comparisons from Demonstration .
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The student essays suggested that they now understood the difference between hypothesis testing
and data dredging, and most indicated how they would revise their research projects in order to
avoid spurious correlations by developing specific hypotheses based upon the published
literature rather than testing hundreds of hypotheses and seeing which are statistically significant.
Several suggest that they might at first conduct an exploratory analysis by conducting a
preliminary study, then conduct a confirmatory replication in order to determine whether the
significant correlations hold across two sets of data from independent samples.

3.2. Demonstration I1: Larger Ns do not protect you from Type | errors!

After the correlation demonstration, my course moved onto inferential tests of differences
between means, beginning with the t test. In a class discussion over the research projects, one
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student suggested he would not have to worry about type | errors because he was working with a
nationally representative dataset consisting of 2000 participants. “With a sample so large, any
observed effect couldn’t be due to chance because the sample is so large.” I explained to him
after class that the sample size was relatively independent from the probability of making type I
errors given a reasonable number of observations. Type 1 errors are a function of alpha, which
the researcher sets, and that sample size only affects the statistical power (B) of the test. So
although a larger sample might reduce the probability of making a type Il error, it would have
relatively little impact upon the type | error rates, because smaller spurious random perturbations
in the sampled data would be detected (and deemed statistically significant) due to the increased
power of the test. He did not seem persuaded by the end of the discussion, so | felt another
demonstration would be in order.

For the following class, | created a spreadsheet called SampleSizeTypelError.xls. (This
spreadsheet is available as an Excel file titled “SampleSizeTypelError.xls” which may be
obtained by following the link here or at the end of this article). In it, | produced two worksheets
consisting of random data using the =rand() function in Excel, “Twenty” and “Two Thousand.”
The twenty sheet consisted of two columns of twenty numbers each, and the two thousand sheet
consisted of two columns of twenty thousand numbers each. In class, | explained that these were
random numbers (since they knew what was up my sleeve from the previous assignment).
Because | was teaching t tests, | set up the file to demonstrate testing the difference between
means using non-directional (2-tailed) independent sample t tests. Using a projector, | followed
the instructions provided in the spreadsheet and clicked on the suggested cells in order to
generate new random lists of numbers to demonstrate that across many re-randomizations of
numbers, there were many “significant” results (type I errors) with the list of twenty and the list
of two thousand numbers. We did an informal count in class, finding 2 type | errors out of 50 for
the sheet with 20 data points, and 3 type I errors out of 50 for the sheet with 2000 random
numbers. The expected number, of course, is 2.5 per 50 (.05) in both cases.

| sent the students home with the following assignment: Please download the spreadsheet we
used in class. I would like you to re-randomize the data set 100 times for both the worksheet of
20 cases and 2000 cases and count the number of “significant” differences you observe between
the two sets of “data.” Please count a) the number of significant cases you found, and b) keep
track of the largest and smallest p value you find within this dataset. Please hand these values in
and write an essay describing what you learned by doing this assignment about a) the frequency
of type I errors b) sample size and type | and Il errors and c) the value of replication.

Figure 3 presents histograms from the 20 students’ simulations. Unsurprisingly, they found an
average of 6 (SE= 0.6) significant differences out of the 100 simulations for the dataset of 20
random numbers and 5.7 (SE = .01) significant differences out of the 100 simulations for the
dataset of 2000 random numbers. The proportion of “significant” results in both sample sizes is
very close to alpha regardless of the sample size.
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Figure 3: Histograms depicting the average number of type | errors out of 100 simulations with 20 and 2000 cases
of data that are random numbers from Demonstration 11.
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In their essay responses, several students mentioned their first attempt at re-randomizing the data
resulted in a significant difference, which suggested to them that it might be possible that their
first attempt at an experiment might result in a type | error. Several noted that replication would
help build confidence in their findings, because it would be unlikely to obtain three sequential
type | errors independently. Most reflected on their surprise that sample size did not protect them
from the probability of making type | errors, and suggested a deeper understanding of the
relation between power and alpha. By this point, hair began growing back on my head.

3.3 Demonstration I11: How ANOVA controls for multiple comparisons, but
type I errors still occur!

A third demonstration | produced using random numbers later in the course aimed to instruct
ANOVA procedures, and specifically why ANOVA is used in making multiple comparisons
over multiple t tests. | developed this spreadsheet in response to several of the student project
proposals that planned to conduct multiple comparisons using several t tests. Since | had not at
that point discussed analysis of variance (ANOVA) in detail, | used this mistake as an
opportunity to develop a random number spreadsheet to help demonstrate how ANOVA controls
for multiple comparisons. However, one misconception | found in teaching ANOVA is that
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students erroneously believe that ANOVA eliminates the probability of type | errors, which of
course is not the case.

| created a spreadsheet called “ANOV AExercise.xls.” (This spreadsheet is available as an Excel
file titled “ANOVAEXxercise.xIs” which may be obtained by following the link here or at the end
of this article). The file contains two worksheets, one consisting of a colorful series of boxes and
charts (ANOVA), and another sheet that can be used to save the simulations (TALLY). On the
ANOVA sheet, on the left there are five “groups” of data ranging from 0 — 10 in different colors.
The summary statistics appear below the data, and a bar graph appears below that, summarizing
the means and standard errors. The pink top panel contains the formula for a one-way ANOVA
comparing the means of the five “groups.” All the necessary information to compute analysis of
variance is included in the box, which proved useful for demonstrating the mathematical formula
used in calculating the F ratio. In the blue box beneath the pink box, there are pairwise t tests
comparing the means of all the group differences. The spreadsheet contained the following
instructions:

To begin this simulation, start in the green box below. Click the "delete™ key. This will
produce a new set of random numbers. The spreadsheet will calculate whether there is a
significant difference between the conditions using an ANOVA versus using ten
independent t tests for multiple comparisons of the group means. Please look in the red
boxes for the results of both tests (ANOVA and T TESTS). Please record on the tally sheet
A) the F ratio, B) if the ANOVA yielded a significant result by typing a 1 for "yes" and a
0 for "no." C) For the t test, count the number of significant “results” you obtained, and
indicate this number on the tally sheet as well. Repeat this 50 times. Once you do 50
simulations, print out the tally sheet and hand it in with your homework. Also, email your
professor the completed file. As always, have fun with statistics and LEARN. Oh, and
don't forget...these data are simply random numbers!

The purpose of this exercise was to determine the number of pairwise comparisons occurring by
chance that are type | errors, relative to the proportion of ANOVA F tests that are type | errors.
With alpha set at .05, the proportion of type I errors would be around .05 for both the ANOVA
as well as the multiple t tests. However, the error in the students’ reasoning is that the absolute
number of type | errors would be much greater for the multiple t tests, simply because the
absolute number of t tests performed is ten times the absolute number of ANOVAs performed.

| provided students with the following assignment to accompany the demonstration: On the tally
sheet, please examine the proportion of type I errors made for both the ANOVA and the t tests.
Please also examine the absolute number of type I errors for both the ANOVA and t tests. Why
are the proportions so equal yet the absolute numbers so different? How does this inform you
about why it is advantageous to use ANOVA over multiple comparisons using t tests? Reflect on
your own research projects. Would you revise your proposed analysis based on this
simulation?”

The students found an average of 2.85 (SE = 0.25) type | errors with the ANOVA simulation,

and an average of 25.2 (SE = 0.74) type | errors with the t-tests. Taking into account the
proportion of tests actually run (50 ANOVAs and 500 t tests) the average proportion of type |

10
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error per test performed was 0.057 (SE = .005) for the ANOVAs and 0.050 (SE = .005) for the t
tests. | used these data to start a class discussion on how ANOVA and t tests have the same
alpha, but in making multiple comparisons, the fact that one is conducting so many independent
tests of hypotheses means that the absolute number of type I errors is greater than that found with
ANOVA. One student pointed out that ANOVA is testing only the hypothesis that at least one of
the groups exhibits performance that is different from at least one of the other groups in such a
way that is unlikely explained by chance variation across all groups. The class discussed how in
many cases (when the number of levels of an independent variable is greater than 2) a significant
omnibus ANOVA requires further analysis through the use of contrasts (for planned
comparisons) or post-hoc tests (for unplanned comparisons).

In their essay responses, most of the students demonstrated that they understood that multiple
comparisons increase the absolute number of type | errors because so many more hypotheses are
being tested, relative to the ANOVA, which tests only the hypothesis that at least one of the
groups exhibits data that seems unlikely due to chance. In class, I used this revelation to
introduce the idea of testing for differences between groups after finding a significant omnibus
ANOVA through a priori contrasts for predicted hypotheses or post-hoc tests such as Tukey’s
HSD or Scheffe’s test for ones that were not predicted.

Additionally, | took advantage of this opportunity to show the students that their simulations
using random numbers produced an F distribution. The previous week, | had explained the F
distribution and showed them examples of F distributions with different degrees of freedom. One
student asked me how statisticians ‘produce’ such distributions. I told them that they had already
produced one, and that | would show this in the following class.

Because the students emailed me their spreadsheets, | copied and pasted the 50 F ratios
produced by the simulation from the tally sheet into an applied statistics software package and
produced a histogram of the resulting distribution of F ratios (See Figure 4). In class, | asked the
students to open their textbook to the page depicting a line graph of the F distribution. I showed
them the resulting histogram, and told them that this was a graph of the concatenated F ratios that
they had submitted to me.

11
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Figure 4: F ratios for 800 simulations using random data from Demonstration Il1.
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“Where have you seen something that looks like this before?”” After a few moments of silence,
the student who asked me how statisticians produce the F distribution exclaimed, “Wait! That
looks like the graph of the F ratio in the book!” I pushed her, “Why would this make sense from
the simulations you produced?”” After a moment, she responded, “Because we were using
random numbers, it would be rare to find large F ratios by chance, but you’d predict small F
ratios by chance which is why there were so many values near 1 or 2, and so few above 3 or 4!”

It was one of those Eureka moments that occur so rarely in an evening graduate statistics class. |
then showed them that out of the 800 simulations produced using random numbers, 35 of them
were above the critical region for o = 0.05 and F(4,800) = 2.38. I asked them to open their
calculators and do the math: 35/800 = .0425, which | pointed out was very close to their alpha of
.05 (These data are included in the spreadsheet as the “800Simulation” worksheet). The
collective a-hahs were quite rewarding, as was the sense that my hair was beginning to grow
back in.

12
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4. General Discussion

Applied statistics software packages have revolutionized the practice of statistical analysis by
saving time and energy that would otherwise go towards long and tedious calculations. Such
programs also afford fewer errors in simple arithmetic that have long frustrated students and
researchers alike. At the risk of sounding like a Luddite, I have found that the ease and rapidity
of testing hundreds of hypotheses in a matter of milliseconds allows students and researchers to
conduct sloppy research that violates basic statistical assumptions and best (or at least better)
research practices. Rather than forgetting to carry over a remainder of 1, students forget that
every hypothesis they test comes at a risk of committing a sin of omission (a type Il error), or a
more critical sin of commission (a type | error). It is easy to toss a dozen variables into a textbox
or run a few dozen t tests and see which hypotheses “stick,” then write up a research report as if
the resulting analyses were produced from genuine hypothesis testing rather than disingenuous a
posteriori hypothesis generation.

The use of random numbers in a spreadsheet application helps teach students the dangers of such
dubious research practices. By interpreting spurious correlations and significant group
differences using actual random numbers, students learn the danger of data dredging, and witness
first-hand the actual frequency of type 1 errors. They also begin to understand how easy it is to
come up with after-the-fact explanation for any significant relation or difference. Additionally,
this exercise helps students better understand the logic of hypothesis testing, and provides a
platform for discussing more detailed topics about various issues, such as Dunn’s procedure for
controlling for error rates in multiple comparisons. Most importantly, students learn how random
processes can create false beliefs, which is an important realization for researchers at the start of
their careers.

One of the benefits of using Excel is that the =rand() function re-samples random numbers every
time any cell value is changed (which is why in several of the exercises, students hit the delete
key within an empty cell — this causes the program to resample the data, producing a new
simulation). Although it is possible to employ macros so Excel re-samples the data without
student input (and do so thousands of times in less than a second) I have found that the use of
such macros limits the pedagogical value of the exercise. By having to simulate the sampling of
new random distributions, students experience the equivalent of a “replication” of an experiment,
and in tallying up data themselves, develop a better feel for the process as a whole than if a
macro did the work. Students acquire a sense of “ownership” of the numbers because of the time
and effort put into resampling over several iterations, more than what they would get out of
pressing a single button. Finally, these exercises give students practice with the Excel program,
which is an important computer skill more generally. For example, several students did not know
that Excel allows for multiple worksheets, or that it is possible to calculate simple statistics (t
tests, ANOVA) using Excel alone.

On a precautionary note, one possible limitation of these demonstrations is that students might
believe that different rules apply to random and real data. For example, in response to the first
correlation demonstration, one student wrote that “Well, the production of type I errors may
occur for random numbers, but when | collect my data I will not be using random numbers, but
actual data, and so I can be more confident in the results than if | were using just random
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numbers.” In response to this, [ emphasized in class that whether the data is “real” or “random”
the same risks of type I errors still apply. I asked my students to imagine a scenario in which they
hand out surveys to a class of bored and disinterested undergraduates, all of whom would rather
be doing anything on earth than answering a boring survey. | propose that each of the
participants might decide to simply answer the survey by randomly circling responses, in which
case the data are “real” but just as “random” as those produced by the Excel program. I also
emphasized that real data can create type | errors by providing them with a real data set of my
height between the years of 1976 — 1996, and U.S. national murder rates during the same period,
showing a strong (0.75) and significant (p <.001) relation between the two variables. |
emphasized both sets of variables were “real,” but they were unlikely related in any meaningful
way (unless my physical development somehow created a murder epidemic, or if the increase in
murder rates somehow spurred my growth — both of which are highly unlikely).

Additionally, the simulation of the F distribution in Demonstration 111 provided them with a clear
example of the reason why ANOVA is used when making multiple comparisons, as well as a
better understanding of the F distribution. The students learned that the proportion of type I
errors were the same for ANOVA and the multiple t tests, but that for any given analysis, there
would be a greater absolute number of type I errors with t tests because so many of them are
performed concurrently when considering all pairwise comparisons of the various levels of an
independent variable. Further, being able to produce a graph of an F distribution from their own
random simulation data allowed the students to better understand how the analysis of variance
procedure works. Also, having a spreadsheet consisting of the simple equations used to calculate
the F ratio helped demystify the often complex and obscure output common to most statistical
packages. The students could trace the equations forward and backwards and understand that the
mathematics underlying these tests is simple arithmetic, and not complicated and abstract algebra
or calculus, but more importantly, not magic!

Did these demonstrations work? Well, the students passed the final exam with flying colors, and
| once again have a full head of hair. But this assessment could just be a type I error, so | will
reserve judgment until replication by others.

Links to Excel spreadsheets discussed in article:

Type | Error Exercise - TypelErrorExercise.xls
Sample Size Type | Error - SampleSizeTypelError.xls
ANOVA Lesson - ANOVAEXxercise.xls
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You may edit these Excel files as you wish, and if you have improvements or suggestions feel
free to email them to me.
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