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Abstract

Two improvements in teaching linear regression are suggested. The first is to include the
population regression model at the beginning of the topic. The second is to use a geometric
approach: to interpret the regression estimate as an orthogonal projection and the estimation
error as the distance (which is minimized by the projection). Linear regression in finance is
described as an example of practical applications of the population regression model.

The paper also describes a geometric approach to teaching the topic of finding an optimal
portfolio in financial mathematics. The approach is to express the optimal portfolio through
an orthogonal projection in Euclidean space. This allows replacing the traditional solution of
the problem with a geometric solution, so the proof of the result is merely a reference to the
basic properties of orthogonal projection. This method improves the teaching of the topic by
avoiding tedious technical details of the traditional solution such as Lagrange multipliers and
partial derivatives. The described method is illustrated by two numerical examples.

1. Introduction

In this paper we demonstrate how the concepts of vector space and orthogonal projection are
used in teaching linear regression and some topics in financial mathematics. Through
geometric interpretations the proofs are made shorter and clearer.
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In Section 2 we remind the reader of some basic facts from linear algebra about orthogonal
projection. In Section 3 we describe the Euclidean space of random variables and discuss
meanings of the term “independence” in different contexts.

Sections 4, 6 and 7 describe some improvements in teaching linear regression. Many statistics
courses consider regression as fitting lines to data. Modern textbooks, for example Wild and
Seber (2000), Chatterjee (2000), Moore and McCabe (2006), teach applied statistics without
referring to probability and mathematical foundations of the statistical methods. Computer
software is widely used for data analysis, which makes the analysis easier but also turns it
into a mysterious process. The population model of regression is sometimes taught in courses
on probability theory, for example Hsu (1997), Grimmett and Stirzaker (2004). But this
model is rarely considered in statistics courses. These courses teach regression only for
samples or briefly mention the population model in a descriptive way. They introduce
formulas for estimates of the regression coefficients without considering formulas for the
coefficients themselves. This leads to long definitions and tedious proofs (or lack of the
proofs). So instead of focussing on the idea of regression the students concentrate on long
calculations or specifications of particular computer software.

There are at least two benefits of discussing the population model of regression. The first is
that it makes some of the ideas in regression clear because sample estimates are natural
analogs of features in the population. The second is that this facilitates discussion of an
interesting application in financial mathematics, which will be discussed in Section 5.

This paper describes a geometric approach in teaching regression when the regression
estimate is interpreted as an orthogonal projection and the residual is interpreted as the
distance from the projection. The geometric approach is used in textbooks on regression to
some extent but the projection there is completely different: it relates to samples and n-
dimensional space R" while in this paper the projection relates to the population and linear
space of random variables.

In Section 8 we describe another application of orthogonal projection in financial
mathematics. One of the problems of portfolio analysis is finding an optimal portfolio — the
portfolio with the lowest risk for a targeted return. This problem is included in textbooks on
financial modelling (Benninga, 2000; Francis and Taylor, 2000), often without mathematical
justification of the result. When a mathematical solution is provided, the problem is treated as
a minimization problem and the solution is found in coordinate form using Lagrange
multipliers and partial derivatives (Teall and Hasan, 2002; Cheang and Zhao, 2004;
Kachapova and Kachapov, 2005; Kachapova and Kachapov, 2006). Here we suggest an
invariant solution that uses geometric approach to random variables and orthogonal
projection in particular.

2. Geometric Facts about Orthogonal Projection
In this section we will fix a Euclidean space L. \

Definition 1. Suppose x is a vector in L
and W is a linear subspace of L. A vector z
is called the orthogonal projection

of x onto W if

1) zeW and W
2) (x—2)L W. |:

Then z is denoted Proj, x. e Proj,, X
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The following is a well-known fact in linear algebra.

Theorem 1. 1) Proj,, X is the vector in W closest to x and it is the only vector with this

property.
2) If vi,..., v, isan orthogonal basis in W, then

(xvs) (xv.)

Proj, x = V, ..+ Vv
v v,v,) v

n?

where (u, v) denotes the scalar product of vectors u and v. [
Definition 2. A subset Q of a linear space B is called an affine subspace of B if there is
geQ and a linear subspace W of B suchthat Q ={q+w|weW }. Then W is called the
corresponding linear subspace. o

It is easy to check that any vector in Q can be taken as q.

Theorem 2. Let Q ={q +w|weW } be an affine subspace of L. Then the vector in Q
with the smallest length is unique and is given by the formula

Xmin = — Proj,, .
Proof of Theorem 2

Q
CI/\ Xmin
w
N

O Proj,, q

Denote z = Proj,, q, then Xmin=0 — Z

Consider any vector yeQ. For some weW, y =g+ w. By Theorem 1.1), z is the vector in
W closest to g and —weW, so we have

Iyll=lla=CEw =g =zI= I Xmin ||
The equality holds only when —w =z, thatiswhen y=q+ W =0 —Z = Xpin . [

Since Xmin IS UNique, it does not depend on the choice of q.
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3. Geometric Approach to Random Variables
3.1. The Vector Space of Random Variables

We will consider random variables on the same probability space. The set H of all random
variables with finite variances is a linear space (with obvious operations of addition and
multiplication by a number).

We denote ux = E(X) the expectation of a random variable X, ze = Var (X) the

variance of X and Cov (X, Y) the covariance of random variables X and Y.

A scalar product given by (X, Y) =E (X-Y) makes H a Euclidean space. In this space

the length of a vector X is given by || X || :\/W:\/aﬂ and the distance between
vectors X and Y isgivenby d (X,Y)=||X=Y||.

A similar approach is used by Grimmett and Stirzaker (2004, pg. 343-347) but they do not
introduce scalar product on random variables. However, the scalar product is very relevant to
orthogonal projections and makes proofs shorter.

In simple cases we can construct a basis of the space H. The following example illustrates
that.

Example 1. Consider a finite sample space Q = {an ,..., @, } with the probabilities of the
outcomes pi =P(m) >0, i=1,.., n. Inthiscase we can introduce a finite orthogonal basis

in the Euclidean space H.

1if j=i,
For each i define a random variable F; as follows: Fi (@) = {O i JJ i
1.
Then for any random variable X in H,
X= > xF, 1)
i=1

where x; = X(@).
Forany i#j, Fi-Fj=0 and (Fi, Fj) = E(F; -Fj) =0, so

FLF. @)

(1) and (2) mean that F;,..., F, make an orthogonal basis in H and the dimension of H is
n.

Forany X,Y in H, their scalar product equals (X, Y) :Z P X;Y;, where y; = Y(@).

i=1
|

3.2. The Concepts of Independence

The authors think it is worthwhile to discuss the concepts of independence and dependence
that students encounter in different contexts. There is independence of events, which we do
not use here. For the current topics it is important that the students distinguish between
independence/ dependence of random variables, their linear relation and their linear
dependence as vectors in  H. We will remind the definitions for only two variables for
brevity.

Definition 3. Suppose X and Y are elements of H.
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1) The random variables X and Y are called independent if for any numbers X, v,
P(X<X, Y<y)=P(X<X)-P(Y<Yy).
Otherwise the random variables are called dependent.

2) The random variables X and Y are said to have a linear relation if Y=a+ X or X =
a+ fY for some numbers «, S.

Equivalently it means that there are numbers a, b, not both zero, and a number ¢, for which
aX+DbY =c.

3) The vectors X and Y in a linear space are called linearly dependent if there are
numbers a, b, not both zero, for which aX + bY = 0. Otherwise the vectors are called
linearly independent. o

Obviously linear dependence 3) implies linear relation 2), and linear relation 2) implies
dependence 1).

Example 2. Let us look at the variables F,..., F , described in Example 1. They are
dependent as random variables (Definition 3.1) because P(F; =1, F,=1)=0 and

P(F1=1)-P(F2=1) =P(e1) - P(e2) = p1 - p2#0.

Next, the random variables F,..., F, have a linear relation (Definition 3.2) because
F1+..+ F, =1. Indeed, forany w;, (F1+..+ F,) (@i =F;(wi) =1.

Finally, Fi,..., F, are linearly independent as vectors (Definition 3.3) because if

aiF +..+ a,F, =0, thenforanyi=1,..,n, 0=(a;F;+..+a,F,)(wi) =aFi (o) =a.

[
To add to the students’ confusion, there are also terms “independent variable” and
“dependent variable” in statistics, which are not strictly defined but intuitively understood.

In statistics we also talk about linear dependence of random variables measured by their
correlation coefficient p,, . This term “linear dependence” is never properly defined but the

theory states that the linear dependence between X and Y gets weaker as p,, approaches 0
and does not exist when p,, =0.

This linear dependence has an interesting geometric analogy for variables with 0
expectations. If X and Y are such variables in H, then (X, Y) =Cov (X, Y),

I X|l=0ox, ||Y]||=oy, and for the angle & between vectors X and Y,

_ (x)y) :Cov(X,Y):p
IXINYI oy -0y

It is easy to prove the following facts using properties of the correlation coefficient as a
measure of linear dependence between random variables.
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Theorem 3. Suppose X and Y are variables in H with 0 expectations, and & is the angle
between them as vectors. Then

1) Cos 6=py, ,

2) the random variables X and Y have a linear relation if and only if the angle & equals 0°
or 180°;

3) if X and Y are independent, then they are orthogonal;

4) there is no linear dependence between random variables X and Y if they are orthogonal
vectors;

5) with angle @ getting closer to 90° there is less linear dependence remaining between X
and Y. -

4. The Population Model of Regression and a Geometric Approach to
Teaching Regression

The idea of regression is clear and simple when it is applied to random variables and
expressed in terms of a population, not samples. Regression apparently means “estimating an
inaccessible random variable Y in terms of an accessible random variable X  (Hsu, 1997),
that is finding a function f (X) “closest” to Y. We call this the population model of regression.
f (X) can be restricted to a certain class of functions, the most common being the class of
linear functions. We describe “closest” in terms of the distance d defined in Section 3.1.

Theorem 1.1) states that Proj,, Y is the vector in W closest to Y. Choosing different W’s we

can get different types of regression: simple linear, multiple linear, quadratic, polynomial,
etc.

Theorem 4. The conditional expectation E(Y | X) is the function of X closest to Y.
|
This is based on the following fact:

E(Y | X) = Proj,Y for W={f(X)| R—>R and f(X)e H}.

Grimmett & Stirzaker (2004) on pg. 346 prove the fact by showing that E(Y | X)eW
and that for any h (X) eW, E[(Y — E(Y | X))- h (X)] =0, thatis Y — E(Y | X) L h (X).

Theorem 5 (simple linear regression). If ox # 0, then the linear function of X closest to Y is
given by

_ Cov(Y,X)
a+ X, where axz ’ 3
a = py = puy.
|
Corollary. If Y= a+ X is the best linear estimator of Y from Theorem 5, then

the residual € =Y — Y has the following properties:

1) 4;=0, 2) Cov (g, X)=0.
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Thus, according to the Corollary, the residuals (estimation errors) equal 0 on average and are
uncorrelated with the predictor X; this is another evidence that Y is the best linear estimator
of Y.

Geometric proofs of Theorem 5 and its Corollary will be given in Section 6.

5. Application in Financial Mathematics

Regression is often taught only for samples, without even considering the population model
for random variables. Perhaps some people believe that the population model is not used in
real life. We use the following application of regression in finance to demonstrate to students
that the population regression model is a practical concept.

Portfolio analysis is the part of financial mathematics that studies the world of N fixed assets
A, Ay,..., An, and their combinations called portfolios.

The % return (we will omit % for brevity) from an investment is treated as a random variable.
We will identify any portfolio x with its return and also denote the return by x.

For a portfolio x, xx=E (x) is called the expected return and the variance o ? = Var (x)

is used as a measure of risk.

Despite the tradition to use capital letters for random variables, in portfolio analysis it is more
suitable to use small letters for portfolio returns.

All portfolios are regressed to the market portfolio m, the portfolio containing every asset
with the weight proportional to its market value. Thus, for any portfolio x the following is
true.

1) Xx=ax+ fxm+e¢e.Theregression line ay+ fxm is the linear function of m closest to x.
So the coefficient [ is the average rate of change of x’s return with respect to the market
return.

2) For the residual &, ux.=0 and Cov (g, m) =0.

2

3) The variance o° represents the total risk of portfolio x;

B2 om? s the systematic risk (or market risk) of x, the risk that affects most investments;
o’ is the unsystematic risk of x, the risk that affects only a small number of investments.
The total risk of x is a sum of the systematic risk and unsystematic risk:

o = ,BXZ onl + 0.
Indeed, o> = Var (X) = Var (ax+ fSxm+¢) = Var (Bxm +¢) =

= B,2Var (m) + Var () + 2 B, Cov (¢, m) = B, o’ + o>, since Cov (g, m) = 0.

4) The coefficient pyn of correlation between the x’s return and the market return

has the following interpretation.
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Theorem 6. p?._ is the proportion of the systematic risk of portfolio x.

Proof of Theorem 6

2

_ 2 O-m _ _
= p, (by Theorem 5) =
(o}

systematic risk of x B, ’o,’
- e

total risk of x .’

2 2 . .
Clearly 5,2 = By n __ systematic risk of x
risk of the market portfolio

m
for ordinal ranking of assets according to their systematic risk. In particular, an asset with
B >1is called an aggressive asset (it is more volatile than the market portfolio), and an asset
with B < 1 is called a defensive asset (it is less volatile than the market portfolio).

So the beta coefficient is used

The following table shows the estimated beta coefficients of some companies in June 2006:

Company Name Beta coefficient
Coca-Cola Company 0.36
Honda Motor Company 0.65
Toyota Motor Corporation 0.70
Telecom Corporation NZ 0.74
Vodafone Group PLC 1
Harley-Davidson 1.03
Sony Corporation 1.09
Microsoft Corporation 1.11
Boeing 1.11
Hilton Hotels 1.14
McDonald’s Corporation 1.19
General Motors 1.32
Apple Computer 1.53
Nokia 1.79
Ford Motor Company 1.84
Xerox Corporation 1.92
Yahoo! Inc. 2.50

5) All this leads to a very important model in finance — the capital asset pricing model:

ux=% + By (um—"1). Here f isthe risk-free returnand u, isthe expected return

of the market portfolio. For more details on regression in finance see Kachapova and
Kachapov (2006).
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6. Geometric Proofs

Advanced textbooks on regression (Seber, 1980; Saville and Wood, 1996; Freund, 1998;
Seber and Lee, 2003; Chiang, 2003; Dowdy, 2004) contain mathematical proofs of the
regression model that use the geometric approach with samples rather than the population.
Such proofs involve coordinates, matrices and partial derivatives and either are very long or
contain significant gaps. So it would be beneficial for the students to provide shorter proofs.
The authors believe that the geometric proof below for the coefficients of simple linear
regression is shorter and conceptually clearer than the usual proofs minimising mean-square
error.

Proof of Theorem 5

Denote W={a+bX|a beR}. Proj,YeW, so Proj,Y=a+ X forsome o, S <R.
We just need to show that « and £ are given by the formula (3).

For e=Y - Proj, Y=Y —(a+ fX),wehave ¢ L1 and ¢ L X,since 1,X e W.
So (g,1)=0and (,X)=0, (a+ X, 1)=(Y,1) and (a+ X, X)=(Y, X), which

leads to a system of linear equations:

E(a+8X)=E(Y) a+fuy =,
and 5 .
E(@X+8X-X)=E(Y-X) apy+BE(X?)=E(Y-X)
The solution of the system is given by (3). [

The following corollary of Theorem 5 was stated in Section 2.
Corollary. If Y=a+ SX isthe best linear estimator of Y from Theorem 5, then
the residual € =Y — Y has the following properties:
D wu:=0, 2) Cov(e X)=0.
Proof of Corollary
1) e 11,50 E(e) =0.
2) ¢ 1L X,s0 E(e-X) =0 and Cov (g, X) = E(e-X) — E(g) - E(X) = 0. u

The Corollary leads to a different interpretation of regression. It is useful in teaching students
who are not familiar with the concept of orthogonal projection. The random variable Y is
divided into two parts:

Y=f(X)+e

and it is required that #. =0 and Cov (g, X) = 0. The part f (X) is called the regression
estimate of Y.
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Theorem 5a. The regression estimate of Y in the class of all linear functions of X is given
by the formula (3).

Proof of Theorem 5a
Y=a+ fX+¢e Cov(Y,X)=Cov (o X)+ SCov (X, X) +CovV (g, X) =

:O+ﬁGX2+0:ﬁGX2. So g = COV(YZ,X).
Ox
W =atfux tpus=atfux, Soa=pu—pfux. u

Unlike Theorem 5, Theorem 5a is not stated in terms of “closest” object. But it has a very
easy proof.

7. Linear Regression for Samples

After the population regression model is introduced we create the statistics regression model
as a sample estimate. We follow the common pattern in estimation theory when a population
object is estimated from a sample. For example, the population mean 4 is estimated by a

2%
sample mean Xx=-=—. Similarly the equation Y = o + B X + ¢ of the simple linear
n
regression is estimated from a sample by the equation Y =a+b X +e, wherea, b, and e

are sample estimates of «, S, and & respectively. Substituting the corresponding sample
estimates for the parameters in (3), we get formulas for the coefficients a and b:

b = X y _ _ 2
sX2 where X, Y, S, and S, are the sample estimates of ux , sy, ze and
a= y-Dbx,

Cov(Y, X) respectively.

8. Optimal Portfolio of Financial Assets

We fix N financial assets Ag, A,,..., AN .

8.1. Modelling Portfolios as Random Variables

Notations
r denotes the return of asset Ax; uy=E(r), o = Var (ry) and ox;= Cov (ry, Ij).

1

1
U= is the column of ones of length N;

10
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Hy
M = Ha is the vector of the expected asset returns, where not all  are the same;
Hy
011 Op O1n
5| 72 92 9| icine covariance matrix of the asset returns.
Ont Onz -+ Onn

We will assume that all expected returns ; ,..., un are defined and the covariance matrix S
exists with det S > 0. The positivity of the determinant of S is equivalent to the fact that the
random variables ry,..., ry do not have a linear relation (recall Definition 3.2). This also
means that ry,..., ry are linearly independent as vectors.

For a portfolio x, xx denotes the proportion of the value of asset Ay in the portfolio’s total
value (negative xx means short sales).

Theorem 7. For a portfolio x,
N

1) X=X
k=1

2) X1+...tXn=1. [ ]

Let us consider the set K of all linear combinations of ry,..., ry. Apparently K is a linear
subspace of the Euclidean space H of random variables described in Section 3.

Theorem 8. 1) ry,..., ry isabasisin K.
2) The dimension of K equals N. u

According to Theorems 7 and 8, any portfolio x is a vector in the N-dimensional Euclidean
space K and can be represented as a column of its coordinates in the basis ry,..., Iy :

Xl
X =
XN
X Y1
Theorem 9. For any portfolios x =| ... | and y =| ... | the following hold:
Xn Yn

1) ux=E )= g1 X1+.. 4 unxn=x - M;
2) ol=Var(x)=x"-S-x;

3) Cov(x,y)=x -S-vy. -

11
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8.2. The Problem of Optimal Portfolio

Suppose an investor wants a certain return ¢ from a portfolio. Usually one can choose
between many portfolios with the same expected return. Clearly the investor wants to pick
the portfolio with the lowest risk. We will call it the optimal portfolio. Risk is measured with
variance. Thus, we get the following definition.

Definition 4. The optimal portfolio for targeted return c is the portfolio with the smallest
variance among the portfolios with the same expected return c. o

Thus, the optimal portfolio minimizes risk for a targeted return.
Xl
A vector x =| ... | is a portfolio with expected return c if it satisfies the following two
XN
conditions:
X+ Xy =1
{ My =C

These conditions can be written in matrix form:

x'-U=1
4
{XT ‘M =c¢ )
Thus, in mathematical form the problem of optimal portfolio can be written as follows:
Var (x) — min
x"-U=1
x"-M=c

8.3. Geometric Solution of the Problem of Optimal Portfolio

Denote Q the set of all solutions of the system of linear equations (4) and W the set of all
solutions of the corresponding homogeneous system:

x"-U=0
{XT'M=0 ©)

Clearly W is a linear subspace of K of dimension N-2 (note that U and M are not
proportional) and Q is an affine subspace of K with W as the corresponding linear
subspace. That is, if q is any solution of (4), then Q ={q+w|weW }.

Here we assume N > 3. The case N = 2 is trivial: in this case there is only one portfolio with
the expected return c.

Theorem 10. The optimal portfolio for the targeted return ¢ is unique and is given by the
formula

Xmin = — PI’OjW q,

where q is any solution of (4) and W is the set of all solutions of (5).

12
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Proof of Theorem 10
For any solution x of (4) we have || x || = (x,X) = E (x%) = o0& + u,? = Var (x) + ¢

Since uy = c is fixed, the solution of (4) with the smallest variance is the same as the
solution of (4) with the smallest length. So Theorem 2 can be applied. [
Theorem 11. Suppose q is a solution of (4) and vi,..., -2 IS an orthogonal system of

vectors, each of which is a solution of (5). Then
1) the optimal portfolio for the targeted return c is given by the formula

N-2 (qu)
Xmin =0 — (—)V ;
min kZ:; Vk,Vk K
2) forany vector y, (y,vk) =Cov (y,Vvy), k=1,..., N-2.

Proof of Theorem 11
1) The dimension of W is N-2, so the orthogonal system vj,..., vy_2 makes a basis in W,

and the formula follows from Theorem 10 and Theorem 1.2).
2) Since each v is a solution of (5), E(vi) =V - M =0.
(y, Vi) =E(y -vi) = Cov (y, vi) + E(y) - E (vi) = Cov (y, vi) + E(y) - 0= Cov (y, vi).

Example 3. Three assets have expected returns of 2%, 1% and 1% respectively and

3 3 -1
covariance matrix S=| 3 5 -—1|. If the targeted return is 3%, find
-1 -1 1

a) the portfolio of these assets with the lowest risk and
b) its variance.

Solution

2
X+ X, +X =1
a) N=3. M=|1|, c=3.Thesystem (4) has the form :
1 2X, + X, + X, =3

2
g=|-1| isasolution of this system (we assign an arbitrary value to one of the
0

variables, e.g. take x3= 0, and solve for the other two variables).

. . . X, + X, + X%, =0
Similarly we find a solution v of the homogeneous system :
2X + X, + X, =0

13
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(q.v)

By Theorem 11, Xmin = — —( ’ )v, (9,v)=Cov (q,Vv) and (v, V) =Var (v).
v,V
3 3 -1 0
So (q,v)=q"-S-v=[2-10]-{ 3 5 -1||-1|=-2;
-1 -1 1 1
3 3 -1 0
(v,v)=v'-S-v=[0-11]: 3 5 -1||-1|=8;
-1 -1 1 1
2 ) 0 2 . 8
Xmin = ( — ((3—’\\//))V: -1|- _? -1|=|-1.25|, Xmin= Z -5].
’ 0 1 0.25 1

b) The variance of Xmin equals Xmin' - S Xmin=4.5. m

Example 4. Four assets have expected returns of 1%, 2%, 1% and 2% respectively

21 1 1
: : 12 1 0 . .
and covariance matrix S = 11 3 -1l If the targeted return is 3%, find
10 -1 2

a) the portfolio of these assets with the lowest risk and
b) its variance.

Solution

X, +X, + X +X, =1
a) N=4. M= , €= 3. The system (4) has the form

X, +2X, +Xg +2X, =3

N PN

q= 0 is a solution of this system (we assign arbitrary values to two variables, e.g.

0

take x3=xX4=0, and solve for the other two variables).
X+ X, +X+X,=0

Similarly we find a solution v; of the homogeneous system :
X, +2X, + X3+ 2%, =0

14
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1
Ve = 0
1- 1 .
0
Xl
X
Next we need to find a solution v, = X2 of the same system that is orthogonal to v;.
3
X4
2 1 1| X
1 2 Of | x
Thus, 0= (v1, Vo) =Cov (v3, V2) =vi' - S-v,=[10-10] - 2=
11 =10 X
1 0 -1 2|]|x,
=X; — 2X3+ 2X4.
2
X, +X +%X; +X, =0 3
So v, is found as a solution of the system < X, +2X, + X, +2X, =0: Vp = 5|
X,  —2X% +2x, =0 3

By Theorem 11, Xmin =0 — vV, — V.,

2 1 17 [ 1
(@, v1) = Cov (q Vl):qT'S'Vlz[—].ZOO]-l 2 =_1:
’ ’ 11 N
10 -1 2||o
2 1 17T 2
(9, v2) =Cov (q V):qT.S.V :[—1200].1 2 3 =10
s e ? 11 _1] =27
10 -1 2||-3
2 1 17 [ 1
1 2 0
vy, Vi) =Var (v))=v;' - S-v;=[10-10]- : =3:
(1 1) (l) 1 1 [ ] 11 1 1
10 -1 2||o

15
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21 1 1][ 2
. o ) 12 1 o|| 3|
(2, v2) =Var (V) =vp" - S v, =[2 3 -2 -3]- L1 3 1llo|7?
10 -1 2||-3
1 1 21 [-15
_ lav)  (av,) _1| o| 10| 3| | 075
SO Xmin=0 - vV, — V,= - — S — = ,
Vov,) P lpvy) 2| 0| 3|-1| 24|-2|"| o5
0 3| | 125
6
1| 3
L
5

b) The variance of Xmin equals Xmin' © S - Xmin=1.5. =

9. Discussion

Most students want to know reasons for the formulas and equations that they study, so
omitting all the proofs can be frustrating to students with sufficient mathematical background
to understand them. When proofs are presented, the authors suggest making them short and
clear. Using the approach described we justify basic formulas for regression and at the same
time avoid lengthy and tedious proofs. Clearly this is not applicable to the statistical
inference for regression where tedious proofs are hard to simplify.

When considering the population regression model and applying orthogonal projection we
clarify the main idea of regression as the estimation of Y interms of X. This is a logical way
to teach regression that we believe improves the students’ critical thinking and conceptual
knowledge of regression as a complement to the procedural knowledge provided in
traditional statistics courses.

The suggested teaching approach requires the students to have some mathematical
background. Firstly, they need to have some intuition about such concepts of linear algebra as
scalar product, orthogonal projection, length and distance (the last three concepts are
intuitively clear for two-dimensional and three-dimensional spaces). Secondly, the students
need to be familiar with such concepts of probability theory as random variables, variance
and covariance, and have basic skills in applying them. Therefore, the suggested approach
can be effective only in the statistics courses, which are part of university courses in
guantitative areas, such as mathematical studies, physics and engineering. The authors
believe that these students are capable of abstract thinking and will appreciate the logic and
structure of this approach.

The authors have used the approach described to teach regression in courses on statistics,
probability theory and financial mathematics at the Auckland University of Technology (New
Zealand) and the Moscow Technological University (Russia). Though a formal statistical
analysis of the results is yet to be done, our case studies show that the students gained a better
understanding of the concept of regression, regression formulas and their logical connections.
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In particular, they demonstrated an understanding that a regression line constructed from
empirical data, is only an approximation of the true relationship between two variables and
that a different set of data may lead to a different approximation of the same relationship.

The second part of the paper (Section 8) describes a geometric approach to teaching the
problem of optimal portfolio in a university course on financial mathematics. The courses on
financial mathematics develop financial theories using mathematical techniques of calculus,
probability theory, stochastic differentiation and integration. Here we apply the geometric
technique of orthogonal projection to the problem of optimal portfolio. The use of the
orthogonal projection makes the reasoning for the problem short and invariant, while the
traditional solution for the optimal portfolio is long and involves coordinates and partial
derivatives. The new method helps the students to concentrate on meaningful modelling
instead of tedious technical details. This is especially helpful for the students whose calculus
technique is weak. Clearly the described approach is suitable mostly in the university
mathematical courses, since the students need to have a reasonable mathematical background.
Case studies at the same universities show that the students understand the topic better and
learn it faster with the new approach. The approach described also demonstrates links
between different areas of mathematics and helps the students to see practical applications of
the abstract concepts of vector space and orthogonal projection.
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