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Abstract 
 

Confidence interval estimation is a fundamental technique in statistical inference.  

Margin of error is used to delimit the error in estimation.  Dispelling misinterpretations 

that teachers and students give to these terms is important.  In this note, we give examples 

of the confusion that can arise in regard to confidence interval estimation and margin of 

error.  

 

1.  Introduction   
 

Confidence interval estimation is a widely used method of inference and margin of error is a 

commonly used term, and these occupy a large part of introductory courses and textbooks in 

Statistics. It is well-known that these concepts are often misused and misunderstood.  Examples 

of incorrect interpretations from a variety of sources, some “authoritative,” are given in Thornton 

and Thornton (2004).  Recent doctoral theses of Liu (2005) and Noll (2007) address teacher and 

teaching assistant understanding of the concepts. Misunderstandings arise for a variety of 

reasons, some as simple as confusing population parameters and sample statistics.  Some of the 

confusion in regard to the meaning and interpretation of these terms stems from the lack of 

appreciation of the difference between a random variable (a function) and its realization 
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(evaluation).  This is illustrated in the following sections.  For simplicity we discuss confidence 

intervals of the form me̂  where ̂  denotes a statistic and me denotes margin of error. 

 

2.  Confidence interval.1
   

Elementary methods in statistics include confidence interval estimation of a population mean  

and population proportion π.  The interpretation of a confidence interval derives from the 

sampling process that generates the sample from which the confidence interval is calculated.  

With a probability distribution over possible samples, the (random) interval is constructed to 

have a specified probability of covering the “true” parameter value.  For example, assuming that 

the observations are normally distributed with mean  and standard deviation σ, 

  allfor   954.0) captures /2(Pr  ny .   

There is a certain awkwardness in interpreting the interval once the data are available and the 

endpoints are calculated.  Returning to the above example, suppose that n = 25, σ = 10 and the 

simple random sampling process results in a sample with mean 50y .  The realized interval 

estimate is 50 ± 4.  Many writers tell the readers that a statement like Pr(46 < μ < 54) = 0.954 is 

to be avoided since “μ is either in the interval (46, 54) or not.”  This reluctance is natural to the 

frequentist since the statement Pr(46 < μ < 54) = 0.954 might suggest that there is a probability 

distribution over the parameter values.  Therefore, we refer to a level of confidence 95.4% for the 

interval 46 < μ < 54.   

As expected, textbooks use reasonable language in describing confidence intervals.  

Consider De Veaux, et al (2009, p. 489).  Here an interpretation based on repeated sampling 

is given for the ideal 95% confidence interval for a population proportion π: “Formally what 

we mean is that „95% of the samples of this size will produce confidence intervals that 

capture the true proportion.‟  This is correct, but a little long winded, so we sometimes say, 

„we are 95% confident that the true proportion lies in our interval.‟” 

 

Moore, et al (2009, p. 367) state the following in regard to the realization 461 ± 9 for the 

random interval estimate 9x : “We cannot know whether our sample is one of the 95% for 

which the interval 9x captures  or one of the unlucky 5% that does not catch .  The 

statement that we are 95% confident is shorthand for saying. „We arrived at these numbers 

by a method that gives correct results 95% of the time.‟”   

 

As another example, consider discussion of the (random) interval estimate ny /96.1   

for the mean  of a normal distribution based on random sampling found in Devore (2008, 

Chapter 7).  In Example 7.2, an interval (79.3, 80.7) is realized.  The author concludes: 

“That is, we can be highly confident, at the 95% confidence level, that 79.3 <  < 80.7.”   

However, on pages 257-258 we find a reluctance to use “confidence” to describe the 

                                                 
1
 A general theory of confidence set estimation was developed by Neyman (1937).  We will not get into Fisher‟s 

fiducial probability and Bayesian approaches. 
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realized interval: “the confidence level 95% is not so much a statement about any particular 

interval such as (79.3, 80.7).  Instead it pertains to what would happen if a very large 

number of like intervals were to be constructed using the same CI formula”.  

 

The above quotes illustrate the commonly accepted use of frequentist probability when it comes 

to the process by which a confidence interval estimate is generated and the term confidence level 

when it comes to the realized interval estimate
2
.   

Although it is incorrect to make a probability statement such as Pr(46 < μ < 54) = 0.954 about a 

realized confidence interval, there is an important way in which the interpretation of the realized 

interval is the same as the interpretation of the random interval.  First consider a simpler 

example: Steve Nash is one of the NBA‟s best free throw shooters, making 90% of his free 

throws. With the sample space {Make, Miss} we can write Pr{Make} = 0.9.  Consider a bettor 

Mr. X who will pay c dollars if Steve Nash misses his next free throw and collect d dollars if 

Steve Nash makes the free throw.  Then Mr. X has an expected profit of 0.9d - 0.1c.  So before 

Steve Nash shoots his next free throw Mr. X, with mathematical expectation governing his 

behavior (and ignoring questions of utility and special circumstances), would be indifferent 

between betting nothing and making the above bet with c = 9 and d = 1.  If Steve Nash already 

has shot his free throw but Mr. X does not know the result, Mr. X would still be indifferent 

between betting nothing and betting $9 versus $1 that the free throw was made, even though it 

may not now make sense to write Pr{Make} = 0.9. 

Next consider a 90% confidence interval for a mean in the context of a normal population with 

known standard deviation.  Mr. X would be indifferent between betting nothing and betting $9 

versus $1 that the random interval will capture , since 

  allfor  9.0) captures /65.1(Pr  ny .  Now suppose that the data are gathered and the 

interval is calculated to be (10, 17).  Mr. X would still be indifferent between betting nothing and 

betting $9 versus $1 that the value of   is between 10 and 17 (assuming that in the future the 

true value of  could be revealed), even though the probability statement Pr(10 <  < 17) = 0.9 

may not make sense. 

Neyman's (1937) construction of confidence intervals via the inversion of a family of hypothesis 

tests provides an alternative interpretation that has found favor in some legal proceedings.   In 

oral testimony in a legal proceeding, Rothman (2007) presented a 95% confidence interval for a 

parameter as the set of values of the parameter not rejected by the data at level 0.05.  In another 

legal proceeding, Katz (1975) presented the confidence set as the set of hypotheses (values of π) 

that are not rejected by the data at some pre-assigned level and used 0.05.   These experts felt 

that, even for an audience with minimal statistical training, it is meaningful to interpret a 

confidence interval estimate as the set of values of the parameter not rejected by the data. We 

agree that this can be an illuminating way to view a confidence interval even for statistically 

naïve users, and hope that its effectiveness will be further studied. 

 

                                                 
2
 Noll (2007, p. 218) seems to take a contrary view in regard to the term confidence and the realized interval 

estimate. 
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In intermediate and advanced courses, the following examples may serve to remind students that 

there are situations where the confidence level derived from the marginal probability distribution 

induced by the sampling is problematic.   

 

Example 1. (D. Basu).  In this example, the sample mean Y does not contain all the useful 

information concerning the unknown parameter.  Consider the family of discrete probability 

distributions Pθ where Pθ(Y = θ – 1) = Pθ(Y = θ) = Pθ(Y = θ + 1) = 1/3, where θ is an integer.  

Then for random sampling with n = 2, 9/7) captures 4/3(   YP  for all θ; yet conditional on 

any realized sample with range R = 2, the probability is 1.  For example with this model and the 

realized sample {17, 19}, the parameter θ must be 18, and the imputation of confidence level 7/9 

to the interval estimate 18 ± ¾ would be foolish.  This example is unusual in that the parameter 

value is determined with certainty for certain easily identified sample outcomes. 

    

Example 2.  Medicare Overcharges.  This is an example where the parameter of interest is 

known to satisfy certain conditions.  Consider an audit of N = 5,000 charges to Medicare totaling 

$10,000,000.  Let yi denote the overcharge to Medicare in billing i, i = 1, 2, …., N and let y 

denote their average.  Thus, y is known to be no greater than $2,000.  Suppose that simple 

random sampling is used with n = 25 and that the sample statistics are 150,2$y  and s = $400.  

The nominal 90% t-interval estimate of y is 

)2287$ ,2013($400$)1000,5(25/)25000,5(711.1150,2$   yet y ≤ $2,000.  Edwards et al 

(2003) show that such examples do arise in practice.  This prompted their development of the 

minimum sum method.  In this example, for some realizations of the sample, the known 

constraints on the parameter show that the interval estimate does not cover the parameter. 

 

3.  Margin of error 
 

Liu (2005) and Noll (2007) suggest that it is important to have an alternative way to look at 

confidence intervals (which is formally equivalent to the usual approach).  The alternative 

approach begins, for example, with an elaboration of the statement 

95.0) captures ˆ(Pr   me .  The equivalence of the events meme   ˆ ˆ ,  

meme   ˆ  and me |ˆ|  allows for such elaborations.  For example, consider 

ny /96.1  , a case where me is not random.  Of course,  7.07.0  yy   is equivalent 

to 7.07.0   y , and Liu (2005) suggests that students may be better served by thinking 

in terms of the latter, namely, that there is a 95% probability that  the random y  falls within 0.7 

of the population mean.  Liu (2005) limits this approach to cases where me is not sample-based. 

In Noll (2007) the same idea is used in contexts where me itself changes from sample to sample, 

and calls the approach an "alternative construal."   

 

There seems to be some confusion created in attempts to use either approach discussed in the 

preceding paragraph to elaborate on the meaning of a confidence interval estimate and margin of 

error.  This arises when the margin of error is sample-based, the common case in t-intervals for 

the mean and in intervals for proportions.  Consider the example of De Veaux et al (2009, page 

490): 
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FOR EXAMPLE.  Polls and margin of error. 

On January 30-31, 2007, Fox News/Opinion Dynamics polled 900 registered voters 

nationwide.  When asked, “Do you believe global warning exists?”  82% said “Yes”.  

Fox reported their margin of error to be ± 3%. 

 

Question: It is standard among pollsters to use a 95% confidence interval unless 

otherwise stated.  Given that, what does Fox News mean by claiming a margin of error 

of ± 3% in this context? 

 

If this polling were done repeatedly, 95% of all random samples would yield estimates 

that come within ± 3% of the true proportion of all registered voters who believe that 

global warning exists. 

 

The interpretation (italicized wording in the FOR EXAMPLE) is wrong if the margin of error is 

a function of the sample of 900 (for example, 900/)ˆ1(ˆ   ).  (It is also wrong if it is 

calculated from 900/)5.01(5.0  .)    

 

Example 3.  For estimation of π for a large population, suppose that simple random sampling 

was used with n = 900 with result ̂  = 0.82.  The nominal 95% large sample confidence interval 

estimate of π is 0.82 ± 0.025.  Assume for the purposes of illustration that the sample count 

900 ̂  is Binomial with n = 900, π = 0.79.  If this polling were done repeatedly, about 93.5% (not 

95%) of all random samples of size n = 900 would yield estimates %ˆ100  that come within ± 

2.5% of 79%. The reason the percentage is not 95% is that the margin of error of the interval is 

computed based on the sample value ̂ = 0.82 which is not equal to the population value of π = 

0.79. 

 

Example 4.  A study was conducted of usable space y on utility poles in Michigan to which 

cable television lines were attached.  The population consisted of over one million poles.  

Suppose that a sampling frame existed that allowed selection of a simple random sample of n = 

50 poles and that sample statistics were fty 3.15  and s = 4.7 ft.  The nominal 95% t-interval 

estimate of  is .34.13.15 ftft    Assume for purposes of illustration that y is distributed 

normally in the population with mean 16.0 ft and standard deviation 6.0 ft so that the distribution 

of y  is normal with mean 16.0 ft and standard deviation 0.85 ft.  If this sampling were done 

repeatedly, about 88.5% (not 95%) of all random samples of size n = 50 would yield estimates y  

that come within ± 1.34 ft of the population mean usable space 16.0 ft. The percentage is 88.5% 

rather than 95% because the margin of error is computed based on the sample value s = 4.7 

which is not equal to the population value of σ = 6.0.  

 

4.  Conclusion 
 

Educators should be aware of the technical points raised in the preceding sections.  But it is also 

important that they convey to students the fact that these technical points assume the correctness 

of a model, and that understanding the possible weaknesses of the model is also of great value. In 
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particular, educators should promote a healthy level of skepticism in reading statistical reports.  

The consumer of statistical information and the practitioner must be concerned with nonsampling 

errors and biases.  It is prudent not to accept a realized confidence interval at face value until 

there is an audit of the processes that both generated the sample and the evaluations of y that 

shows conformance to accepted practice.   

 

To make the point, consider the Gallup Poll Task used by Noll (2007, Figure 35, p. 215). 

 

Gallup Poll Task 

Your statistics class was discussing a Gallup poll of 500 Oregon voters‟ opinions 

regarding the creation of a state sales tax.  The poll stated, “… the survey showed that 

36% of Oregon voters think a sales tax is necessary to overcome budget problems”.  

The poll had a margin of error of ± 4%.  Discuss the meaning of margin of error in this 

context. 

 

Here are issues that we would like to see students raise, in addition to technical issues:  Notice 

that the process by which the sample of 500 was generated is not given.  There is no indication 

as to what sampling frame was used, how the voters were contacted, what defines a voter, what 

instrument was read or sent, what frame issues exist, and what protocols were used in regard to 

follow-up after initial nonresponse.  There is no mention of nonresponse rate.  There is no 

mention of documentation that allows for an audit of the sampling process, there is no indication 

as to how the sample was selected.  (An educated guess is that it was not by simple random 

sampling, although standard errors based on simple random sampling commonly agree with 

values reported for polls in the media.)  There is no mention of the processes used to control 

nonsampling errors and biases.  All of these issues are important for a meaningful and 

defensible interpretation of the stated margin of error. 

 

However, assuming that Gallup followed accepted practice, used a probability sample, and a 

nominal 95% level confidence interval, then there is a rational basis for acting according to 

approximate 95% confidence in the statement that 36% ± 4% captured %100 .  Thus, we fall 

back on the usual interpretation, e.g. from De Veaux et al (2009, p. 489) that “we are 95% 

confident that the true proportion lies in our interval,” with “95% confident” being appropriately 

interpreted.  

 

We conclude with an analogy that seems to convey the essence of the probability features and 

inherited confidence level in confidence interval estimation. 

 

Example 5.  Pitching Horseshoes
3
.  Consider a person so skilled that he/she can pitch a 

horseshoe blind-folded and with ear plugs and make ringers 95% of the time.  After pitching the 

shoe one time, the person does not know whether a ringer was made or not.  Yet, he/she is so 

confident that he/she is willing to bet at about 19:1 that a ringer was made. 

 

Rarely in the practice of statistics is it possible to determine with certainty whether an interval 

estimate does or does not contain the parameter value, i.e., whether a “ringer was or was not 

                                                 
3
 See Wonnacott and Wonnacott (1990, pages 256-257).   
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made.”  It is the process that generated the interval estimate and the documentation of that 

process that allow the user and decision-maker to have confidence in the interval, i.e., that a 

“ringer was made.” 
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