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Abstract 

Null distributions of permutation tests for two-sample, paired, and block designs are simulated 

using the R statistical programming language. For each design and type of data, permutation 

tests are compared with standard normal-theory and nonparametric tests. These examples (often 

using real data) provide for classroom discussion use of metrics that are appropriate for the data. 

Simple programs in R are provided and explained briefly. Suggestions are provided for use of 

permutation tests and R in teaching statistics courses for upper-division and first year graduate 

students. 

 

1. Introduction 

Important issues in the practical application of hypothesis testing are to understand the purpose 

and nature of the data, to measure the size of an effect, and to determine whether the effect is 

statistically significant. We believe that a consideration of various permutation tests provides a 

useful framework for discussing these issues. The computer software package R (R Core 

Development Team, 2008) is useful in finding very close approximations to exact distributions. 

Normal approximations (or other distributional approximations) are then less important. We 

provide small bits of R code so that the reader can follow the logic of the programming. The 

remainder of the programs can be found in an appendix and on the JSE website. 
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Permutation tests are often taught as part of a statistics curriculum, particularly in nonparametric 

courses (Tarpey, Acuna Cobb, De Veaux, 2002).  [It is not our intent here to show details of 

standard nonparametric tests or to provide a comprehensive introduction to permutation tests.  

Coakley, 1996, gives an extensive bibliography of nonparametric texts and monographs, 

including Capéraà and Van Cutsem, 1988, and Sprent, 1993.  An additional reference of interest 

is chapter 10 of Stapleton, 2008. Good, 2000, provides a practical guide to permutation tests.  

Additionally, Moore, 2007 and Utts and Heckard, 2006 provide introductions to nonparametric 

tests in supplemental chapters of their basic textbooks. Hesterberg, Monaghan, Moore, Clipson 

and Epstein 2003 provide a supplemental chapter on the web which uses S-Plus
®
: 

http://bcs.whfreeman.com/pbs/cat_160/PBS18.pdf ] Callaert (1999) states: ―Students in an 

applied statistics course offering some nonparametric methods are often (subconsciously) 

restricted in modeling their research problems by what they have learned from the  

T-test. When moving from parametric to nonparametric models, they do not have a good idea of 

the variety and richness of general location models.‖  Permutation tests can also provide insight 

to the general concepts of hypothesis testing and allow us to use different metrics.  Wood (2005) 

suggests the use of simulation models for ―deriving bootstrap confidence intervals, and 

simulating various probability distributions.‖  Wood points out that the use of a simulation model 

provides an alternative approach to that of ―deriving probabilities and making statistical 

inferences‖ that is more accessible to the student.  Aberson, Berger, Healy and Romero (2002) 

describe an interactive web-based tutorial for illustrating statistical power.  Thus, the use of 

repeated sampling to illustrate statistical concepts is not new to the classroom.  And permutation 

tests provide a useful alternative when the distributional assumptions for parametric tests are 

under question. 

 

Nonparametric tests are often permutation tests and for small samples the exact P-values can be 

found in many references (Hollander and Wolfe (1999) for example). For large samples the 

traditional approach is to use asymptotic parametric distributions to find approximate P-values. 

We suggest using simulations (programmed in R) to obtain approximate P-values by taking a 

large random subset of all the possible permutations of the data. 

 

We use the computer software package R (R Core Development Team, 2008) to perform the 

simulations and provide P-values.  R and S-Plus
®
 are very similar derivatives of the S 

programming language.  Authors (Verzani, 2008, Hodgess, 2004) in this journal advocate the use 

of R in both introductory and advanced courses.  As Verzani points out: ―Why R? There are 

many good reasons. R is an open-source project, hence free for the students and the institution to 

use. R is multi-platform (Windows, Mac OS X, and Linux). It has excellent graphics. It has an 

extensive collection of add-on packages, such as pmg.‖   

 

In this article, we present the use of simulation (re-sampling) to develop approximate 

distributions for permutation test statistics using a variety of data (categorical, ordinal and 

continuous).  Several metrics for testing are explored with the take-home message that the 

metrics for ―center‖ and ―dispersion,‖ and consequently test statistics, should fit the nature of the 

data.  We use metric here and distinguish metric from a test statistic in that the metric is a raw 

measure of a population characteristic that has not been standardized (examples are median as a 

metric for the center and range as a metric for dispersion). Permutation tests can be built on the 

http://bcs.whfreeman.com/pbs/cat_160/PBS18.pdf
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distribution of the metric itself (without standardization). We estimate the permutation 

distribution of the metric by re-sampling.  

  

The objectives of this article are to explore permutation tests as a viable alternative to the 

parametric location tests, to explore the performance of the different metrics, and to acquaint the 

student with the use of R.  Several suggested student exercises for each section to illustrate these 

concepts are provided in Appendix A. We have included some bits of code in the text and 

representative R programs (with color coded alternative code in comment lines) in Appendix B 

to illustrate the structure of R and how to perform simulations in R. Full R code for all the 

figures can be found on the JSE website at: 

http://www.amstat.org/publications/jse/v18n1/Permutation/Welcome.html 

 

Traditionally, a drawback to the use of permutation tests has been the difficulty of determining 

the permutation distribution of the metric under the null hypothesis. In a few very simple 

situations, it is possible to use elementary combinatorial methods to find the permutation 

distribution, or at least some of its key tail probabilities. For moderate or large sample sizes it 

may be possible to obtain sufficiently accurate approximations to tail probabilities using 

asymptotic methods. Nowadays, it is common to simulate the permutation distribution using a 

statistical package. In the simulation approach, one does not attempt to enumerate all possible 

permutations, but randomly to sample enough of them to get a serviceable approximation to the 

permutation distribution. Here we use R to do the sampling, summarize the results, and find a 

close approximation to the true P-value. This idea is not new, Dwass (1957) points out ―The 

main point is that instead of basing our decision on 






 

n

nm
permutations of the observations, we 

can base it on a smaller number of permutations and the power of the modified test will be 

‗close‘ to that of the most powerful nonparametric test.‖ R makes this process readily available 

to the instructor and the student. Jöckel (1986) explores the Pitman efficiencies of this approach, 

thus justifying its use. 

 

In a beginning upper-division statistics course where it is possible to project a computer screen, 

an instructor might briefly discuss a particular permutation test, show what is being simulated by 

our corresponding program, demonstrate a run of the program, and discuss the output. In a more 

advanced class, students might be asked to make slight changes in our programs to get results for 

a different dataset or to use a different metric. Nowadays, R is so widely used in industry and 

research that familiarity with R can be an important skill in the job market. Because R is free 

software readily downloaded from the web (www.R-project.org), students should have no 

trouble obtaining R for use on personal computers. 

 

Primers in the use of R are widely available and it is not our purpose here to provide a detailed 

introduction to its use. [See especially the current version of Venables and Smith: An 

Introduction to R, http://cran.r-project.org/doc/manuals/R-intro.pdf, Verzani: Simple R: Using R 

for Introductory Statistics, http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf, and the 

books by Dalgaard (2002) and Rizzo (2008).] However, because all of our permutations are 

performed with the random function sample in R, we begin by showing briefly how this 

function works. We say this is a random function because it uses a pseudo-random number 

http://www.amstat.org/v18n1/Permutation/Welcome.html
http://www.r-project.org/
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generator to sample a (possibly) different result each time the function is used. Outcomes from 

the state-of-the-art generator in R are, for practical purposes, not distinguishable from random 

samples. As we use it, the sample function has three arguments: the first is a vector designating 

the population, the second is the number of items sampled from that population, and the third is 

required only when sampling is done with replacement (as in Section 3). When sampling is done 

without replacement (the default) and the number sampled is the same as the population size, the 

result is a permutation of the population. For example, there are 3! = 6 permutations of the three 

numbers in the vector (1, 2, 3), and each time we use the command sample(1:3, 3)we 

get—at random—one of these six permutations. We illustrate with four iterations, all of which 

happened to give different results: 

 
> sample(1:3, 3) 

[1] 3 1 2 

 

> sample(1:3, 3) 

[1] 3 2 1 

 

> sample(1:3, 3) 

[1] 1 2 3 

 

> sample(1:3, 3) 

[1] 1 3 2 

 

In Section 2 we consider three different data types in a block design, and some of the various 

metrics that can be used to measure the effect in question. We also illustrate permutation tests for 

these situations along with results of some more familiar normal theory and nonparametric tests. 

In Section 3 we consider the same issues, restricting the discussion to paired data and discussing 

how to think about outliers. In Section 4 we look at permutation tests for two-sample data. 

 

2. Block Designs: Judging a Food Product 

Suppose we wish to compare g = 3 brands of chocolate pudding (individually packaged single 

portions, ready to eat). Each of n = 6 randomly chosen professional judges independently tastes 

all three recipes (data in section 2 are from ―Taster‘s Choice‖ column of San Francisco 

Chronicle, Sept. 1994). 

 

2.1. Scenario 1: Each judge picks a favorite 

 

Each judge assigns the code 1 to his or her favorite brand, and 0 to the other two. The matrix of 

results is shown below, where each entry is either 0 or 1 and each column has exactly one 1 and 

where we denote the sum of the i
th

 row as Xi, for i = 1, 2, 3. 

 



Journal of Statistics Education, Volume 18, Number 1 (2010) 

 
 

5 

 

Brand    Taster:  1   2   3   4   5   6    X = Obs. pref. count 

——————————————————————————————————————————————————————————————————— 

A                 0   1   1   1   1   1             5 

B                 1   0   0   0   0   0             1 

C                 0   0   0   0   0   0             0  

 

Our null hypothesis is that the three brands are equally appealing. That is, each brand has 

probability pi = p = 1/3 of being chosen as favorite by any one of the judges. Then, by 

multinomial theory, the expected number of judges preferring each brand is E = np = 2. Are our 

observed results consistent with this null hypothesis?  

 

We need a numerical scale or metric to express how well the data agree with our null hypothesis, 

and then a way to decide whether agreement is good or poor. The traditional metric used here is 

Pearson's chi-squared statistic Q = i (Xi – E)
2
/E. According to this statistic, Q = 0 indicates 

perfect agreement with the null hypothesis and a sufficiently large value of Q indicates such poor 

agreement that the null hypothesis should be rejected. For our data, Q = (9 + 1 + 4)/2 = 7. As a 

nonparametric test, this is equivalent to Cochran’s test which is a special case of the Friedman 

test for randomized block designs when the responses are binary. 

 

Asymptotically, for sufficiently large n, the distribution of Q is well approximated by the chi-

squared distribution with  = 2 degrees of freedom, CHISQ(2). This approximation gives a P-

value of 0.03. That is, only 3% of the probability in this distribution lies at or above Q = 7. Based 

on this we might be tempted to reject the null hypothesis at the 5% level. Unfortunately, the true 

distribution of Q agrees rather poorly with CHISQ(2) for only n = 6 judges. This does not mean 

that the statistic Q is a bad way to measure agreement between the observed and expected 

preference counts. It does mean that we cannot use CHISQ(2) to make a valid decision based on 

our observed value of Q.   

 

In this simple case, it is possible (although a little tedious) to use elementary combinatorial 

methods to find the exact distribution of Q for our problem. It turns out that the possible values 

of Q are 0, 1, 3, 4, 7, and 12, with P{Q = 7} = 0.0494 and P{Q = 12} = 0.0041. [For example, 

there are 3
6
 = 729 possible data matrices of which only 3 give Q = 12, the ones with sums 6, 0, 0 

in some order, so P{Q = 12} = 3/729 = 0.0041.] Thus the exact P-value for our data is 

P{Q  7} = 0.0494 + 0.0041 = 0.0535, and we cannot quite reject the null hypothesis at the 5% 

level.  

 

However, in only slightly different problems it can be very tedious, extremely difficult, or 

practically impossible to find the exact distribution of the test statistic Q. A modern solution to 

this difficulty is to simulate at random a very large number of data matrices from among the 729 

possible ones, find the value of Q for each, and use the results to approximate the distribution 

of Q. The first program in Appendix B does this simulation for our data [Figure 1(a)]. Note here 

that an ―exact‖ P-value is the probability that the statistic is as extreme as the observed value using 

the true distribution of the statistic given that the null hypothesis is true. An ―approximate‖ P-

value is the probability that the statistic is as extreme as the observed value using a distribution 

that is approximating the true distribution of the statistic under the null hypothesis. 



Journal of Statistics Education, Volume 18, Number 1 (2010) 

 
 

6 

 

 

In this program we denote the observed g  n data matrix as OBS. A permutation of this matrix is 

made by permuting the 0‘s and 1‘s of the rows within each of the n = 6 columns in turn, 

essentially determining at random for each judge (column of the matrix) which brand is his or 

her favorite (which of the g = 3 possible positions has code 1). The result is the permuted matrix 

PRM. The inner loop of the program does this permutation. The brackets [,j] indicate the j
th

 

column of PRM. For example, when the first column is permuted the population of the sample 

function is (0, 1, 0) and the permuted first column is equally likely to become (1, 0, 0), (0, 1, 0), 

or (0, 0, 1).  

 

PRM = OBS 

for (j in 1:n)  

  { 

  PRM[,j] = sample(PRM[,j], 3) 

  } 

 

The outer loop of the program generates 10,000 permutations in this way and computes the chi-

squared statistic Qprm (q.prm) for each. Finally, we have a sample of 10,000 simulated values of 

Qprm from the permutation distribution, with which to compare the observed value Qobs 

(q.obs) = 7. These results are plotted in the histogram of Figure 1(a), where the curve is the 

(obviously ill-fitting) density of the distribution CHISQ(2) and the small dots show exact 

probabilities. The results can also be tallied as shown below. Of the 10,000 simulated 

values Qprm about 5.6% are 7 or greater, so the (approximate) P-value of the permutation test 

is 0.056, which agrees well with the exact P-value 0.054. By using more than 10,000 iterations 

one could get an approximation arbitrarily close to the exact distribution. 

 

          x         0      1       3       4       7      12 

Exact P{Q=x}    .1235  .4938   .2058   .1235   .0494   .0041 

Simulated       .1257  .4944   .2047   .1188   .0523   .0041  

 

The first line of the program sets the seed for the pseudorandom number generator. If you use the 

same seed and software we did, you should get exactly the results shown here. If you omit the 

first line (or ―comment it out‖ by putting the symbol # at the beginning of the line), you will get 

your own simulation, which will be slightly different from ours. By making several simulation 

runs (without specifying a seed), each with m = 10,000 iterations, you will see that it is 

reasonable to expect approximations somewhat larger than 0.05 for this P-value. Five additional 

runs yielded P-values between 0.052 and 0.057. More precisely, the 95% margin of simulation 

error for P{Q  7} can be computed (using the normal distribution for the 95% confidence and 

the binomial (10000, 0.054) standard error of the simulation) as approximately as 

1.96[(.054)(.946)/10,000]
1/2

 = 0.004.  
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Figure 1.  Four simulated permutation distributions for taste tests in Sec. 1 and Sec. 2: different data types 
and metrics. 
 

2.2. Scenario 2. Each judge ranks the brands  

 

Next, suppose we require the judges to provide a little more information. Specifically, each judge 

ranks the three recipes: 1 for least liked, 2 for next best, 3 for best. In this case the entries in the 

data matrix must be 1, 2, and 3 (in some order) down each column, and again we denote the row 

totals as Xi. Now the data matrix might be as follows:   

 

Recipe  Taster:   1   2   3   4   5   6    X = Obs. sum of ranks 

——————————————————————————————————————————————————————————————————— 

A                 1   3   3   3   3   3            16 

B                 3   2   2   2   2   2            13 

C                 2   1   1   1   1   1             7 

 

Under the null hypothesis that the three brands are equally preferable, each judge has an equal 

chance of making one of the 3! = 6 possible assignments of the ranks 1, 2, and 3 to the three 

brands. So, on average, the Xi ought to be equal, each with expected value 12. The next issue is 

to decide what metric to use to measure how similar or how different the Xis are from one 

another. One reasonable metric is the variance,  V, of the Xi. The observed variance (of the sums 

16, 13 and 7) is V = 21. If all tasters have exactly the same opinions, we would have V = 0; we 

will reject the null hypothesis for large values of V. 
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Is V = 21 a sufficiently large value that we should reject the null hypothesis? Combinatorial 

methods for finding the exact distribution of the variance seem out of reach. However, if we 

simulate the permutation distribution of the variance in much the same way as we did before, we 

can compare it to the observed variance and find a useful P-value. The required program is a 

very slight modification of the one used in Scenario 1 (see Appendix B for code for Figure 1 

(b)). The numerical result is that about 3% of the 10,000 simulated variances equal or exceed 21, 

so the P-value is about 0.0304. In Figure 1(b) this corresponds to the area under the histogram 

and to the right of the vertical line. Thus the increased information provided by the judges in this 

scenario is enough to allow us to reject, at the 5% level, the null hypothesis that all brands are 

equally preferred. An equivalent metric is U =  Xi
2
 because V = (U – 36

2
/3)/2 = (U – 432)/2  = 

21. For the dimensions of this design, the quantity subtracted in the numerator is always 432. 

Thus there is a monotone relationship between U and V, and a permutation test using either 

metric would give exactly the same P-value.  

 

We mention that this situation is essentially the Friedman test for data in a block design with g = 3 

groups and n = 6 blocks, where data within each block are ranked separately. (Two suitably 

comprehensive references are Sprent (1993) and Higgins (2004).) As here, the data in each block 

may already be ranks or, as in Scenario 3, they may be scores that can be ranked. For moderately 

large n, the Friedman test statistic (which is also a monotone function of U, and hence of our 

metric V) is distributed approximately CHISQ(2), so the P-value is about 0.0302. [With OBS 

specified as in Appendix B, the Friedman test can be performed using the R statement 

friedman.test(t(OBS)), where t indicates the transpose of our data matrix.] Texts on 

nonparametric statistics, such as Hollander and Wolfe (1999) provide tables with exact P-values 

for some nonparametric tests, for these data the Friedman test statistic is S = 7 and the P-value 

found in their Table A.15 is 0.029. A permutation test using any reasonable metric avoids the 

necessity of making tables for small designs or finding asymptotic approximations for larger 

ones. Also, permutation tests handle ties (up to some breakdown point where there is too little 

information) with no need for adjustments. 

 

2.3. Scenario 3. Each judge scores each brand  

 

Finally, assume that the each judge is asked to make notes on several aspects of each brand. 

Perhaps judges are asked to rate whether the pudding tastes good, whether it looks appealing, 

whether it feels smooth in the mouth, and whether it has an authentic chocolate taste. Points are 

given for each aspect and added—with a maximum possible score of 20 for each brand by each 

judge. Now the data matrix might look like this:  

 

Recipe  Taster:   1   2   3   4   5   6    X = Obs. sum of scores 

——————————————————————————————————————————————————————————————————— 

A                 7  15  20  16  15  18            91 

B                16   6   4  10  13  11            60 

C                 8   0   0   9   5   6            28 

 

 

If we believe the judges follow the scoring rules carefully and that the scale is defined 

appropriately, we may be willing to take the judges‘ total scores as numerical values on an 
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interval scale. Also, it is possible that these scores might be nearly normally distributed because 

each score is the sum of several sub-scales reflecting various aspect of pudding quality. Outliers 

seem unlikely because each score is constrained to lie between 0 and 20. Assuming normality, 

the data can be analyzed according to a two-way ANOVA complete block design with g = 3 

brands or recipes (levels of a fixed effect) and n = 6 tasters (considered as random blocks) and no 

interaction effect. Then, by a standard ANOVA computation, the observed value of the test 

statistic is F = 165.39/21.32 = 7.76. Under the null hypothesis that all brands have equal 

population means, this statistic is distributed as F(2, 10), so the P-value is 0.00925. 

 

However, because we are asking the judges to provide numerical scores for subjective judgments 

there may be some doubt whether these data should be treated as strictly numerical, and thus 

doubt about using the F-statistic as a metric. For example, it seems difficult to imagine that the 

observed extreme scores 0 and  20 are warranted. Do these judges really feel they taste, 

respectively, very nearly the worst and very nearly the best possible chocolate pudding that can 

ever be made? Additionally, these are subjective ranks; one judge‘s 15 may be another judge‘s 

17.  

 

If we choose to use ranks instead of numerical scores, we can rank the scores for each judge and 

use Friedman‘s test as described above (P-value 0.0302). An alternative rank-based procedure 

would be to rank all 18 scores (assigning rank 1.5 to each of the scores tied at 0), and perform an 

ANOVA on the ranks. This is called a rank-transform test. The resulting P-value is 0.0115. 

Clearly the ranks are not normal, so the F statistic does not have exactly an F distribution and 

this P-value must be viewed as only a rough indication of the degree of significance. 

 

Now we consider two permutation tests. In both cases the null hypothesis is that the three brands 

are of equal quality, and in both cases we permute separately the scores for each judge, but we 

use different metrics to look for possible differences among brands. First, as in Scenario 2, we 

sum the scores and use the variance of the sums as the test statistic. Except for the statement that 

provides the data, the program is the same as in Scenario 2. The P-value is 0.012, and the 

histogram of the simulated permutation distribution is shown in Figure 1(c). We might use this 

metric if we regard the scores as truly numerical.  

 

Second, we find the median score for each of the three brands and then use as the test statistic the 

MAD (here the median of the absolute deviations from the middle one of the three brand 

medians). The modified program is shown on the website. Our simulation distribution had only 

eleven distinct values of the MAD, of which the observed value 5, the largest of these eleven, 

occurred for only 40 of the 10,000 permutations. Therefore, the P-value is about 0.004. (Five 

additional runs gave values between 0.0038 and 0.0046.) The relevant histogram is shown in 

Figure 1(d) (see JSE website for programs of Figures 1(c) and 1(d)). The MAD is a reasonable 

metric if we believe the data follow an ordinal scale so that higher scores reflect better quality, 

even if not in a strictly numerical sense. In general, this metric may be more satisfactory for 

larger values of g and n where there would be more distinct values of the MAD.  

 

http://www.amstat.org/v18n1/Permutation/Welcome.html
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2.4. Summary of three scenarios 

 

Table 1 below summarizes our tests on the pudding data, with the four simulated permutation 

tests shown in bold font. The specific type of permutation test depends on the kind of data 

(indication of one favorite brand, ranking of three brands, or numerical scores for three brands), 

how the data are summarized across judges (counting, adding, or taking the median), and how 

these brand summaries become a test statistic (chi-squared GOF statistic, variance, or MAD). 

 

Table 1. Results from the pudding data with simulated permutation tests in bold font. 

Scenario and Data Type Test and Metric P-Value 

1. Count Favorites per Brand Goodness-of-Fit test chi.sq. approx. (ill 

fitting) 

0.030 

1. Count Favorites per Brand GOF test: Exact distribution of chi-sq. 

statistic 

0.0535 

1. Count Favorites per Brand Sim. Perm. test using chi-sq. GOF statistic 0.056 

2. Sum of Ranks per Brand Sim. Permutation test using variance of 

sums 

0.030 

2. Sum of Judge-Ranks per Brand Friedman test (approx. chi-sq. distribution) 0.0302 

3. Sum of Scores per Brand ANOVA, F-test (assumes normal data) 0.00925 

3. Sum of Global-Ranks per 

Brand 

Rank transf. ANOVA, approx. F-test 0.0125 

3. Sum of Scores per Brand Sim. Permutation using variance of sums 0.012 

3. Median of Scores per Brand Sim. Permutation using MAD of medians 0.004 
 

 

The tests from Scenario 3, where we have numerical scores, have smaller P-values and hence 

seem to provide ―stronger― evidence that not all brands are alike. The evidence is usefully 

stronger to the extent that judges‘ scores accurately express subjective impressions as numerical 

scores. The permutation test using the MAD of group medians happens to have the smallest 

P-value; it mutes somewhat the discord caused by Judge 1‘s preference for Brand B and 

Judge 3‘s strong preference for Brand A. 

 

It would not be correct to conclude that one of these tests is more powerful than another just 

because it happens to have a smaller P-value for the pudding data. Determination of power 

requires an exact specification of an alternative (non-null) distribution. For the standard normal-

theory tests (such as F-tests and T-tests) applied to normal data, the distribution theory for power 

is known and the power for various alternative parameter values can be computed exactly. For 

many nonparametric and permutation tests, simulation is used to find approximate power. We 

revisit the issue of power briefly in Section 3. 
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3. Paired Designs: Asthma Patients Breathing Clean and Contaminated Air 

 

In this section we consider the special case of a block design in which the number of groups is 

g = 2. In this case, a complete block design is usually called a paired design. If data collected 

according to such a design are normal, the appropriate normal-theory test of a difference between 

the two group population means is the paired T-test. In this relatively simple setting, we discuss 

the effects of nonnormal data. 

 

Increase in airway constriction during exercise was measured in each of n = 19 asthma patients, 

in pure air and also in air contaminated with 0.25ppm sulfur dioxide (SO2). The purpose of the 

study is to see whether SO2 increased the specific airway resistance (SAR). Results are shown 

below (Bethel, Haye, Oberzanek, George, Jimerson and Ebert,. 1989).  (Link to AsthmaData.txt 

on the website. The data can also be found in Pagano and Gauvreau, 2000.) 

 

Subj 1 2 3 4 5 6 7 8 9 10 

Air .82 .86 1.86 1.64 12.57 1.56 1.28 1.08 4.29 1.34 

SO2 .72 1.05 1.40 2.30 13.49 .62 2.41 2.32 8.19 6.33 

Dif 0.10 -0.19 0.46 -0.66 -0.92 0.94 -1.13 -1.24 -3.90 4.99 

 

Subj 11 12 13 14 15 16 17 18 19 

Air 14.68 3.64 3.89 .58 9.50 .93 .49 31.04 1.66 

SO2 19.88 8.87 9.25 6.59 2.17 9.93 13.44 16.25 19.89 

Dif -5.20 -5.23 -5.36 -6.01 7.33 -9.00 -12.95 14.79 -18.23 

 

 

Data under both conditions are strongly right-skewed with extreme outliers in the right tails. In 

this paired design it is sufficient to look at differences di, i = 1, ..., 19, obtained by subtracting the 

measurement with SO2 from the measurement in pure air. Thus, the 14 negative values of di out 

of 19 indicate bad effects from the air contaminated with SO2.  

 

Because we cannot imagine that SO2 contamination would be beneficial to asthma patients, we 

perform a left-tailed test. The paired T-test has T = –1.687. If the di were normal with 0 mean, 

this test statistic would have the t distribution with  = 18 degrees of freedom, and so the P-value 

would be 0.054, indicating that the null hypothesis of equal group means cannot quite be rejected 

at the 5% level. This is a counterintuitive result because of the great preponderance of subjects 

who suffered worse airway constriction with S02.  

 

3.1 Traditional nonparametric tests 

 

Briefly, here are results of three nonparametric tests that are commonly used for paired data. All 

of them lead to the conclusion (at the 5% level) that SO2 is associated with increased airway 

constriction.  

 

 The sign test. The null hypothesis is that positive and negative values of di are equally likely, 

so the number B of positive di has B ~ BINOM(19, .5). The P-value of this test is P{B  5} = 

http://www.amstat.org/v18n1/eudey_asthma_data.txt
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0.0318, and we reject the null hypothesis that SO2 has no effect in favor of the alternative that it 

does harm. It is worthwhile observing that one could not perform such a sign test exactly at the 

5% level: the obtainable P-values adjacent to 5% are at 0.0835 and 0.0318. The sign test is a 

simple example of a permutation test. Imagine tossing a fair coin to determine whether each di is 

positive or negative. Because we know the exact null distribution of B, using simulation to 

approximate this binomial distribution serves no practical purpose. 

 

 The Wilcoxon signed-rank test of the null hypothesis that median of the paired differences is 

0 against the alternative that the median is less than 0. Under the null hypothesis of this test, the 

dis have a continuous distribution symmetrically distributed about 0. The P-value of this test, 

based on a reasonable normal approximation, is 0.018. [With the obvious specifications of Air 

and SO2, one can obtain this result using the R code 

wilcox.test(Air, SO2, alt="less", pair=T). In practice, the data may be 

arranged in increasing order of |di| to facilitate hand computation of the Wilcoxon statistic.]  

 

 The rank-transform test. This approximate test involves ranking all 38 observations and 

performing a paired T-test on the differences in ranks. Pretending that, under the null hypothesis, 

the resulting t-statistic follows the t distribution with  = 18, we obtain the P-value 0.011. 

 

3.2. Permutation tests using simulation. A permutation test for paired data is based on the null 

hypothesis that either of the two values observed within a pair could equally likely have been 

observed for the first group. In terms of differences, this amounts to saying that the sign of any of 

the differences di might equally well have been positive or negative. Accordingly, the R code to 

make each permutation samples n = 19 values at random with replacement from the values –1 

and 1, and (element wise) multiplies the resulting vector of 19 ―signs‖ by the vector of the 19 

observed di (denoted Dif in the program). Various metrics could be used to summarize the sign-

permuted differences (perm). We consider the T-statistic, mean, median, and 10% trimmed 

mean.  

 

Specifically, when the metric is the mean, the inner loop of the program, shown in full in 

Appendix  B (Figure 2(a)), is as follows: 

 

for (i in 1:m) 

 { 

 perm = sample(c(-1,1), n, repl=T) * Dif 

 mean.perm[i] = mean(perm) 

 } 

 

Note: In computing the 10% trimmed mean, the largest and smallest 10% of the n 

observations are deleted before the mean is taken. The number 0.1n is rounded down to 

the nearest integer, so for n = 19 the mean of the middle 17 observations is taken. The 

50% trimmed mean is interpreted to be the median, a fact we use to simplify the first 

program in Appendix B.  
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Figure 2 shows histograms of the simulated permutation distributions of the mean and the three 

other metrics mentioned above. Simulated P-values are shown in Table 2 below.  

 

Table 2: P-values from traditional tests and simulated P-values from the metrics of Figure 2 

Test and Metric P-value 

 T-test   0.054 

 Sign test   0.0318 

 Wilcoxon signed rank test   0.018 

 Rank transform test (global ranks, differences of pairs)   0.011 

 Sim. Permutation: T-stat. of sign-permuted di   0.054 

 Sim. Permutation: Mean of sign-permuted di   0.054 

 Sim. Permutation: Median of sign-permuted di   0.017 

 Sim, Perm.: 10% Trimmed mean of sign-permuted di   0.038 

 

 

 

Figure 2. Histograms of simulated permutation distributions for the paired SAR data of Section 3.  Vertical 
dotted lines show the observed value for the metric used. The density curve of T(18) is shown in panel (a). 
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3.3. Which test is “best”?  

 

The answer lies in the meaning of the measurements. In particular, we have to understand the 

practical importance of the largest and smallest values among the original SAR measurements. 

For example, at one extreme the largest SAR values might indicate frightening or life-threatening 

episodes for the asthma patients, and at the other extreme they may be transient glitches in the 

equipment used to make the measurements. Looking at the smallest SAR values, we may wonder 

whether either of the two SAR values for Patient 1 represents clinically significant restriction. 

Also, we may ask whether any of the eight patients with |di| < 2 actually notices a difference in 

his or her breathing, or whether such a difference may be of clinical importance even if not 

noticed by the patient. These are questions to be asked by an alert statistical consultant and 

answered by experts in pulmonary medicine. (In a totally different context, if the measurements 

were monthly costs for two comparably sized branches of a chain store, then one would almost 

certainly not choose a metric that suppresses the influence of large outliers.) The goal is to match 

the metric to the meaning of the data. 

 

An advantage of simulated permutation tests is that they allow a choice of metric without 

requiring theoretical derivation of the resulting null distribution. For example, one may wonder 

whether the traditional paired T-test fails to reject because the data are too far from normal for 

the T-statistic to have anywhere near a t distribution. However, when we use the T-statistic as the 

metric in a permutation test, understanding that thereby we are attaching considerable 

importance to outliers, there is no doubt that the P-value accurately reflects the evidence as 

measured by the T-statistic. For our data this P-value is nearly equal to that of the traditional T-

test, so this is an instance that illustrates the legendary robustness of the traditional T-test. 

 

It turns out that the T-statistic and the mean are equivalent metrics for our permutation tests for 

paired data. (The simulated P-values are exactly the same because we used the same seed and so 

sampled the same collection of permutations for both.) Algebraically, it is not difficult to show 

this is a consequence of the invariance of i di
2
 under permutation of the signs of the di, so that 

the value of the T-statistic for permutations of the signs of the di is a monotone function of the 

mean d (or of the sum i di). Graphically, this is illustrated in panel (a) of Figure 3 where each 

dot represents a different one of the 10,000 permutations (code in Appendix B). By contrast, 

panels (b) and (c) indicate that the mean, median, and trimmed mean are three fundamentally 

different metrics. See the program located on the website. 

http://statistics.csueastbay.edu/~jkerr/JSE/Permutation/
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Figure 3. For permutation tests on the paired data of Section 3, the mean, median, and trimmed mean are 
fundamentally different  metrics, but the mean and the T-statistic yield the same P-value. Lines show 
observed values. Each point results from a random permutation of the 19 observed SAR differences.  Red 
lines indicate the rejection regions; in the lower left hand corner both tests reject the null. 

 

3.4. Rejection probabilities for multi-test decision procedures 

 

With so many tests available, a naive (or unprincipled) ―statistician‖ may be tempted to ―shop 

around‖ until he or she finds a test that rejects the null hypothesis and then report only the result 

of that one test. This is misleading because the overall significance level for such a shopping 

spree is larger than the significance level for any one of the tests tried. In general, simulation is 

required to find the true significance level of such a multi-test procedure. We illustrate this by 

simulating the rejection probability for a combination of a sign test and a T-test in the case where 

we have 13 observations from a normal population and we want to test the null hypothesis that 

the data are centered at  = 0 against the alternative that the mean is negative.  The R code for 

the results shown in Figure 4(a) and Figure 4(d) is in Appendix B. 

 

 Significance level. We simulated 100,000 normal samples of size n = 13 from the standard 

normal distribution NORM(0, 1). (Here, we are using 100,000 samples for higher accuracy.) If 

we reject when the T-statistic is –1.7823 or smaller, then the significance level (probability of 

falsely rejecting the null hypothesis) is 5%. For the sign test, if we reject when the number of 

positive results B is 3 or smaller then the significance level is 0.0461 = 4.61%. (We choose 

n = 13 because this sample size provides a one-sided test with significance level near 5%.) 

Simulation shows that the probability of rejecting with at least one of these two tests is P(Reject 

H0 with either test
 
|
  = 0)  0.07. Thus the two-test decision procedure has level 7%, not the 

intended 5%. The top two panels of Figure 4 plot summary values of each of the first 5000 

samples of these 100,000. Even though each test has significance level around 5%, these graphs 

show how differently the tests can treat the data from individual samples in rejecting, or failing 

to reject, the null hypothesis.  

 

 Power. The power (probability of correctly rejecting the null hypothesis) is a function of the 

alternative value of . We illustrate for the specific value  = –1/2. The simulation procedure is 
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the same as for the significance level, except now the samples are drawn from NORM(–1/2, 1), 

so that the population is centered at  = –1/2 and the probability is 0.3085 that any one 

observation is positive. Also, against this alternative, the power of the T-test is 0.52 (from a 

computation in R using the non-central t distribution: se = 1/sqrt(13); pt(-

1.7823,
 
12, ncp=-.5/se) and the power of the sign test is 0.39 

(pbinom(3, 13, 0.3085)). However, P(Reject H0 with either test |  = –1/2) = 0.56, which is 

only a little larger than for the T-test alone. The bottom two panels of Figure 4 illustrate this 

situation. By selecting different values of  one could simulate the power of this two-test 

decision procedure against other alternatives. 

 

 
Figure 4.  Illustration of significance level (top panels) and power (bottom panels) of a T-test and a sign test 
performed on the same data. Each dot represents a different simulated normal sample of size 13. (See 
section 3.4.) 

 

4. Two-Sample Designs: Corn Yields and the Challenger Disaster 

 

Now we turn to two simple examples in which the purpose is to compare two independent 

samples, of sizes n1 and n2, respectively, which are chosen from two possibly different 

populations. If we want to determine whether the means 1 and 2 of two normal populations are 
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equal, then traditional tests are the pooled T-test (if the population variances are thought to be 

nearly equal) and the Welch separate-variances T-test (if we do not assume equal variances). We 

note here that since the advent of computer packages the Welch test is often used without 

checking the equality of variance. However, beginning statistics texts still often use the pooled T-

test and hence, we include both tests here. 

 

For two continuous populations of the same shape, but possibly differing as to their location 

(implying different medians 1 and 2 as well as different means), the Mann-Whitney-Wilcoxon 

(MWW) rank sum test is often used. Nonparametric tests are not free of assumptions. For the 

MWW test the same-shape assumption implies equal dispersion (whether measured in terms of 

variance or otherwise). The continuity assumption implies that ties occur only because 

continuous data must be rounded to some extent, and the ideal is that ties are rare or nonexistent. 

There are many other nonparametric tests for two-sample designs, but we do not discuss them 

here. 

 

4.1. Small samples: Corn yield data 

 

When samples are very small, it is not feasible to judge whether the data come from a normal 

population. In an experiment to study the effect of certain kind of weed on corn yield, data on 

yields were obtained from four plots that were free of weeds and from four plots with heavy 

coincident weed growth. Data as reported in a text by Moore and McCabe (1999) are as shown 

below. (The one very low yield in the second sample was noted and verified as correct.) 

 

Weed Free: 166.7,   172.2,   165.0,   176.9  

Many Weeds: 162.8,   142.4,   162.8,   162.4 

 

We consider two-sided tests. The pooled T-test has T = 2.19, so if the assumptions are met, this 

statistic would have the t distribution with  = 6 degrees of freedom, and P-value 0.071 against 

the two-sided alternative. In this balanced case (where n1 = n2), the separate-variances test must 

also have T = 2.19, but now  = 4.6 and the P-value would be 0.085. The MWW test has 

P-value 0.0286 as explained below. 

 

A permutation test is based on the 8! permutations of the n1 + n2 = 8 observations, in which the 

first four observations are taken as coming from the first sample and the last four from the 

second sample. Then according to some metric we summarize the information in the two 

permuted samples and compare them. The test statistic might be the difference in the two means. 

Then all that is required is to notice that all of the yields in the first sample are larger than any of 

those in the second. There are C(8, 4) = 8! /
 
(4!)

2
 = 70 possible combinations of four observations 

from among eight, of which one of the two most extreme combinations has occurred—with the 

four smallest values in the many-weed group. Another equally extreme combination would have 

been to see the four largest values in this group. Thus our two-sided P-value is 2/70 = 0.0286. (In 

this case where a most-extreme combination occurs, the P-value of our permutation test is the 

same as for the MWW test.)  
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The inner loop of the program to simulate this permutation test is as follows. See the R code for 

Figure 5(a) in Appendix B. 

 

for (i in 1:m) 

{ 

perm = sample(x, n1+n2) 

dfmn.prm[i] = mean(perm[1:n1])- mean(perm[(n1+1):(n1+n2)]) 

} 

 

 

The simulated P-value from one run is 0.0288. The margin of simulation error based on 100,000 

iterations is about 0.001, so this result agrees quite well with the exact P-value obtained above by 

combinatorial methods. As was the case with the paired T-test, the balanced case, the pooled 

T-statistic is an equivalent metric to the difference in means. That is, either metric will produce 

exactly the same simulated P-value for the same set of 100,000 permutations. 

 

However, for our data the exact P-value 2/70 differs substantially from the P-value of either 

T-test. In panel (a) of Figure 5 we plot the histogram of the simulated permutation distribution of 

the T-statistic to show how poorly it agrees with density curve of the t distribution with  = 6 

degrees of freedom. (This value of  is for the pooled test; the separate-variances test potentially 

has a different value of  for each permutation, so it would be difficult to know which t 

distribution to show.) This is a case in which the T-test works very poorly—because of the small 

sample size and the outlier. The lumpy appearance of the histogram mainly reflects the 

granularity of the permutation distribution. Because of the small sample sizes this distribution 

takes only about 50 distinct values. However, even when sample sizes are larger, outliers can 

cause a multimodal permutation distribution, as the outliers fall randomly into either the first 

permuted sample or the second. 

 

Figure 5. Histograms of simulated permutation distributions for two-sample tests in Section 4. (a) For the 

corn data, the permutation distribution does not match the t density with  = 6 (superimposed curve). (b) For 
the Challenger data, the simulated permutation distribution matches the exact permutation distribution 
(dots) very well. 
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4.2. Samples with many ties: Challenger data 

 

In 1986 the space shuttle Challenger exploded after being launched at a temperature of 29F, the 

lowest temperature at which any shuttle had been launched. A subsequent investigation found 

that the explosion was caused by fuel leakage. Historically, non-catastrophic fuel seal problems 

due to the failure of O-rings had been noted. Most of these problems had occurred at low 

temperatures. The text by Ramsey and Shafer (2002) reports the following data on number of O-

ring failures on each of 24 earlier launches, broken out by launch temperatures below 65F 

(which we call Cold) and above 65F (Warm) from data shown in Feynman (1988). 

 

Cold 1, 1, 1, 3 

Warm 0, 0, 0, 0, 0,  0, 0, 0, 0, 0,  0, 0, 0, 0, 0,  0, 0, 1, 1, 2 

 

We want to see if the number of O-ring failures is negatively associated with temperature. Here 

we use a one-sided test because the issue of O-ring failures at colder temperatures had apparently 

been discussed and dismissed as inconclusive before Challenger was launched. The MWW test 

can be adjusted for ties by assigning an average rank to those values that tie, and finding the P-

value through permutation of the ranks works well. However, the normal approximation used for 

the MWW test no longer applies without adjustments to the formulas for expected value and 

variance of the MWW statistic. Consequently, we discuss an alternative methodology here. 

Although there are no outliers here, the data do not seem to fit a normal distribution at all. 

Nevertheless, we note that the statistic for the pooled T-test is T = 3.8876, giving a P-value of 

0.0004 according to the t distribution with  = 22. (The Welch separate-variances test has P-

value 0.038.) 

 

Now we illustrate the permutation test based on the difference of the two sample means, for 

which the observed value is 1.3.  Because there are so many ties, it turns out that the permutation 

distribution takes only eight distinct values, whose probabilities can be found with some effort 

using elementary combinatorial methods [see Ramsey and Schafer (2002)]. Shown in the table 

below are these eight values, their exact probabilities from combinatorics, and their simulated 

probabilities based on a run of a program similar to the one used in Section 4.1. (The pooled T-

statistic is an equivalent metric, but in this unbalanced case, with n2 much larger than n1, the 

Welch T-statistic is a quite different metric.) 
 

Difference of 

Means 
-0.05 -0.2 0.1 0.4 0.7 1 1.3 1.6 

Exact Probability 0.224 0.320 0.192 0.144 0.080 0.030 0.009 0.001 

Sim. Probability 0.225 0.320 0.191 0.145 0.081 0.029 0.009 0.001 
 

 

Thus the P-value of the permutation test is 0.010. In retrospect, these data show a clear 

association between cold weather and an increased risk of fuel leakage. Panel (b) of Figure 5 (R 

code in the Appendix B) shows the histogram of the simulated frequencies and small dots show 

the corresponding expected frequencies based on the exact probabilities. The simulated P-value 

from this run of 100,000 iterations is 0.0095  0.0006. 

 



Journal of Statistics Education, Volume 18, Number 1 (2010) 

 
 

20 

 

5. Conclusion 

 

Most textbooks stress the use of nonparametric tests for data sets that are too small to adequately 

test the assumptions of parametric tests and for use with data sets not meeting the normality 

assumption of the T-test.  A commonly used graphical method for assessing normality is to 

create a boxplot and look for outliers.  However, this method is not very sensitive, nor very 

specific.  Hoaglin, Iglewicz and Tukey (1986) show that approximately 30% of samples of size n 

= 19 sampled from normal distributions will have outliers as defined by the 1.5 IQR rule.  We 

emphasize that nonparametric tests should also be used when the data are not inherently numeric 

in nature, for example when using subjective ratings of a judge or judges. 

 

We present a variety of data from categorical (picking a favorite), ordinal (ranks and ratings), 

and continuous data (asthma example, corn data and Challenger data), including skewed data 

(asthma data) and a small data set (corn data), in order to illustrate the importance of choosing a 

test metric appropriate to the nature of the data.  This is done in the setting of approximating P-

values for permutation tests by using simulations programmed in R.  Our examples can be 

presented easily in a classroom and provide motivation for a discussion of appropriate measures 

of central tendency and dispersion.  Permutation tests provide valuable alternative tests when the 

assumptions of the standard parametric tests are not met, either because of outliers or skewness, 

or because the data are not truly numeric in nature. Our suggested code is flexible enough for the 

students to alter for the suggested exercises (and for different data sets) and thus provides 

interactive illustrations of fundamental statistical concepts. 
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Appendix A: Suggested Exercises for Students 

For Section 2: 

1. The scores for the first five judges in Scenario 3 are reported in Saekel (1994), but one of the 

authors, a self-proclaimed expert on chocolate pudding, served as the sixth judge. The scores in 

Scenarios 1 and 2 are derived from those given in Scenario 3. The addition of a sixth judge 

slightly simplified the exposition of Scenario 1. Analyze the original data for the first five 

judges: (a) according to Scenario 1, (b) according to Scenario 2, and (c) according to Scenario 3. 

 

2. In Section 2.3, the ANOVA model permits an F-test test for a ―Judge‖ effect. (a) Verify the 

F-test for differences among Brands, and then perform and interpret the F-test for variation 

among judges. (b)  Repeat part (a) using the rank-transformed data. (c) Why is a test for a Judge 

effect not included in the procedure for the Friedman test on Brands? 

 

For Section 3: 

1. Ignore the first ten asthma patients as showing ―too little difference to matter.‖ If 5 < |di| < 10, 

then rate the patient as 1, where the sign matches that of di. Similarly, if |di| > 10, then rate the 

patient as 2. (a) Do a sign test on the resulting data. Do you find a significant difference at the 

5% level between the two groups? (b) Report results of a simulated permutation test on these 

ratings, using the mean rating as the metric. 

2. Refer to Section 3.3. Complete the details of the algebraic proof that, within a simulated 

permutation test, the one-sample T-statistic is a monotone increasing function of the sample 

mean.
 

3. As in Section 3.4, use simulation find the power against the alternative  = –3/4 for both tests, 

separately and in combination. (Answer: For the T-test, power is 0.817.) 

4. Derive the equation of the slanted line in panels (a) and (c) of Figure 4 from a statement that 

says when a T-test on a sample of size 13 rejects at the 5% level.  

 

For Section 4: 

1. Perform the MWW test for the corn yield data. With suitable specifications of data vectors 

Free and Many, use the following R code: wilcox.test(Free, Many, exact=T). In 

the data vector Many, change 162.8 to 162.7 and repeat. 

 

2. Consider the permutation test on the Challenger data. (a) The largest value of the difference D 

between group means occurs when the permutation leads to values 1, 1, 2, and 3 in the Cold 

group. Show that the probability of this is 10 /
 
10,626 = 0.001. (b) The next largest value of this 

statistic occurs when the Cold group has values 1, 1, 1, and 3 (as actually observed). This same 

value also occurs when the Cold group has values 0, 1, 2, and 3. Show that P(D = 1.3) = (10 + 

85)/10,626. 

 

3.  Run the program for Figure 5(a), using the option shown for the Welch T-statistic. How do 

you know this is not the same metric as the pooled T-statistic for the Challenger data? 
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 Appendix B: R Programs 

####################################   FIGURE 1(a)   #################################### 

# L. Eudey, J. Kerr, B. Trumbo (September 2009):                                         # 

# Using R to Simulate Permutation Distributions for Some Elementary Experimental Designs # 

# Code for Figure 1(a) Simulated permutation test for GOF statistic                      # 

# (Some embellishments for in graphs for publication omitted.)                           # 

########################################################################################## 

 

# Specify constants, input data, summarize data 

n = 6;  g = 3 

OBS = matrix(c(0,1,1,1,1,1, 

               1,0,0,0,0,0, 

               0,0,0,0,0,0), byrow=T, nrow=g)  # g x n data matrix 

x.obs = rowSums(OBS); x.obs                    # g-vector of sums 

q.obs = sum((x.obs - 2)^2 / 2);  q.obs         # observed GOF statistic 

 

# Simulate permutation distribution 

set.seed(308)                               # omit for different simulation 

m = 10000                                   # number of iterations 

q.prm = numeric(m)                          # m-vector of 0's 

for (i in 1:m)                              # begin outer loop 

 {    

 PRM = OBS 

 for (j in 1:n)                            # begin inner loop 

  { 

  PRM[,j] = sample(PRM[,j], 3)      # permute each column 

  }                                 # end inner loop 

 x.prm = rowSums(PRM)                # g-vector of sums 

 q.prm[i] = sum((x.prm - 2)^2 / 2)   # GOF stat. of permuted matrix 

 }                                   # end outer loop 

 

# Graphical display of results 

cut = (0:(max(q.prm)+2)) - .5                  # for "nice" hist. intervals 

hist(q.prm, breaks = cut, prob=T, col="wheat") # draw histogram 

xx = seq(0, max(q.prm), len = 200)             # x-values for density curve 

lines(xx, dchisq(xx, 2), col="blue")           # draw density curve 

text(10, .45, paste("P=", round(mean(q.prm >= q.obs), 3)), cex=.9, pos=4)   # p-value 

abline(v=q.obs, lty="dashed", col="darkred")   # line at obs. GOF stat 

x = c(0, 1, 3, 4, 7, 12)                       # possible values of GOF stat 

exact = c(30, 120, 50, 30, 12, 1)/243          # exact GOF probabilities 

points(x, exact, pch=19, col="darkgreen")      # exact probability points 

 

# Printed display of results 

length(unique(q.prm))                          # no. of distinct values of sim GOF stat 

summary(as.factor(q.prm))/m                    # tally GOF values (divided by m) 

summary(q.prm)                                 # compare mean with E[CHISQ(df=2)] = 2 

var(q.prm)                                     # compare variance with V[CHISQ(df=2)] = 4 

mean(q.prm >= q.obs)                           # P-value of sim. perm. test 

p.apx = 1 - pchisq(q.obs, 2); p.apx            # compare with chi-sq. approx. 

 

# Bold maroon lines show, for comparison, chi-sq. approximation of GOF statistic. 

# Italic dark green lines show, for comparison, exact probabilities of GOF statistic. 

 

 

# ------------------------------------------------------------------------------------------------- 

# Printed output for seed shown 

# > x.obs = rowSums(OBS); x.obs                    # g-vector of sums 

# [1] 5 1 0 

# > q.obs = sum((x.obs - 2)^2 / 2);  q.obs         # observed GOF statistic 

# [1] 7 

# ... 

# > length(unique(q.prm))                          # values of sim GOF stat 

# [1] 6 

# > summary(as.factor(q.prm))/m                    # tally GOF values (divided by m) 

#      0      1      3      4      7     12  

# 0.1257 0.4944 0.2047 0.1188 0.0523 0.0041  

# > summary(q.prm)                                 # compare mean with E[CHISQ(df=2)] = 2 

#    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

#   0.000   1.000   1.000   1.999   3.000  12.000  

# > var(q.prm)                                     # compare variance with V[CHISQ(df=2)] = 4 

# [1] 3.394938 

# > mean(q.prm >= q.obs)                           # P-value of sim. perm. test 

# [1] 0.0564 
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# > p.apx = 1 - pchisq(q.obs, 2); p.apx            # compare with chi-sq. approx. 

# [1] 0.03019738 

 

 

###################################   FIGURE 1(b)   ###################################### 

# L. Eudey, J. Kerr, B. Trumbo (September 2009):                                         # 

# Using R to Simulate Permutation Distributions for Some Elementary Experimental Designs # 

# (Some embellishments in graphs for publication omitted.)                               # 

########################################################################################## 

 

# Specify constants, input data, summarize data 

n = 6;  g = 3 

# Ranks within columns for Figure 1(b) 

OBS = matrix(c(1, 3, 3, 3, 3, 3, 

               3, 2, 2, 2, 2, 2, 

               2, 1, 1, 1, 1, 1), byrow=T, nrow=g) 

 

row.obs = rowSums(OBS)     

statsta.obs = var(row.obs) 

row.obs;  statsta.obs 

 

# Simulate permutation distribution 

set.seed(308) 

m = 10000 

stat.prm = numeric(m) 

 

for (i in 1:m) 

 { 

 PRM = OBS 

 for (j in 1:n)  

  { 

  PRM[,j] = sample(PRM[,j], 3) 

  } 

 row.prm = rowSums(PRM) 

 stat.prm[i] = var(row.prm)   

 } 

 

# Display of graphical results 

cut = (0:(max(stat.prm)+1)) - .5 

hist(stat.prm, breaks = cut, prob=T, col="wheat") 

abline(v=statsta.obs, lty="dashed", col="darkred") 

text(30, .2, paste("P=", round(mean(stat.prm >= statsta.obs), 3)), cex=.9, pos=4)   # p-value 

# Display of numerical results 

length(unique(stat.prm))                # granularity: no. of unique sim. values of perm. stat. 

mean(stat.prm >= statsta.obs)            # P-value of simulated permutation test 

 

 

 

# ----------------------------------------------------------------------------------------------- 

# Printed output for seed shown 

 

## Fig. 1(b) 

# > row.obs;  statsta.obs 

# [1] 16 13  7 

# [1] 21 

# ... 

# > length(unique(stat.prm)) 

# [1] 16 

# > mean(stat.prm >= statsta.obs) 

# [1] 0.0304 

 

 

 

##################################   FIGURE 2(a)   ####################################### 

# L. Eudey, J. Kerr, B. Trumbo (September 2009):                                         # 

# Using R to Simulate Permutation Distributions for Some Elementary Experimental Designs # 

# Code for Figure 2, panel (a).  Code in purple mark where changes need to be done to    # 

#     get panels (b-d)                                                                   # 

# Use full screen to display graph in graphics window of R.                              # 

########################################################################################## 
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# Input and manipulate data 

# (Optionally perform paired t-test or Wilcoxon signed-rank test) 

Air = c(.82, .86, 1.86, 1.64, 12.57, 1.56, 1.28, 1.08, 4.29, 1.34, 

        14.68, 3.64, 3.89, .58, 9.50, .93, 0.49, 31.04, 1.66) 

SO2 = c(.72, 1.05, 1.40, 2.30, 13.49, .62, 2.41, 2.32, 8.19, 6.33, 

        19.88,8.87,9.25, 6.59, 2.17, 9.93,13.44,16.25,19.89) 

Dif = Air - SO2  

n = length(Dif) 

# t.test(Air, SO2, pair=T, alte="less")      # paired t-test (omit first # to activate) 

# wilcox.test(Air, SO2, pair=T, alte="less") # Wilcoxon SR test (omit first # to activate) 
 

# Simulate permutation distribution 

set.seed(1234)                               # Omit seed for a different simulation 
m = 10000;  tsta.prm = mean.prm = medn.prm = trmn.prm = numeric(m) 

tsta.obs = sqrt(n)*mean(Dif)/sd(Dif)           # t-stat metric 

 

for (i in 1:m)  
 {  
 perm <- sample(c(-1,1), n, repl=T)*Dif  
 tsta.prm[i] = sqrt(n)*mean(perm)/sd(perm)     # t-stat metric 

}  

tsta.pv = round(mean(tsta.prm <= tsta.obs) ,3)      # Simulated P-value (t-stat) 
 

# Display graphical results (P-values in text on each graph) 

 

hist(tsta.prm, prob=T, xlim=c(-4.5,4.5), col="wheat",  

main="(a) Perm. Test for SAR Differences", xlab="T-Statistic of SAR Differences") 

yc =.9 *max(hist(tsta.prm, prob=T, plot=F)$density)  # y-coordinate for text 

text(-4.7, yc, paste("P=",tsta.pv), cex=.9, pos=4)   # See ?text for parameters 

xx = seq(-3,3,len=200);  lines(xx,dt(xx,n-1), lwd=2, col="blue") 

abline(v=tsta.obs, lwd=2, col="red", lty="dashed")   

 

 

######################################   FIGURE 3(a)   ################################### 

# L. Eudey, J. Kerr, B. Trumbo (September 2009):                                         # 

# Using R to Simulate Permutation Distributions for Some Elementary Experimental Designs # 

# Code for Figure 3, panels (a), (b) and (c)                                             # 

# In R, use full width of graphics window to display result.                             # 

########################################################################################## 

 
# Input and manipulate data  

Air = c(.82, .86, 1.86, 1.64, 12.57, 1.56, 1.28, 1.08, 4.29, 1.34, 

        14.68, 3.64, 3.89, .58, 9.50, .93, 0.49, 31.04, 1.66) 

SO2 = c(.72, 1.05, 1.40, 2.30, 13.49, .62, 2.41, 2.32, 8.19, 6.33, 

        19.88,8.87,9.25, 6.59, 2.17, 9.93,13.44,16.25,19.89) 

Dif = Air - SO2;  n = length(Dif) 

mean.obs = mean(Dif);           tsta.obs = sqrt(n)*mean(Dif)/sd(Dif) 

 

# Simulate permutation distribution 

set.seed(1234) 

m = 10000;  mean.prm = tsta.prm = trmn.prm = medn.prm = numeric(m)  

 

for (i in 1:m) 

 { 

 perm = sample(c(-1,1), n, repl=T)*Dif 

 mean.prm[i] = mean(perm) 

 tsta.prm[i] = sqrt(n)*mean(perm)/sd(perm) 

 } 

 

# Display graphical results (P-values in text on each graph) 

plot(mean.prm, tsta.prm, pch=".", cex=2, col="#444477", 

 main="(a) Mean and T-stat Metrics Are Equivalent", 

 xlab="Sample Mean", ylab="T-Statistic") 

abline(h=tsta.obs, col="red") 

abline(v=mean.obs, col="red") 

 

 

# Print P-values:   

# Rationale: The comparision (tsta.prm <= tsta.obs) yields a 'logical' m-vector of T's and F's. 

#    When arithmetic is performed on a logical vector, T is taken to be 1, and F to be 0. 

#    The 'mean' of a vector of 0's and 1's is the proportion of 1's. 
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mean(tsta.prm <= tsta.obs)             # simulated P-value with t-stat as metric 

mean(mean.prm <= mean.obs)             # simulated P-value with mean as metric 

 
# ---------------------------------------------------------------------------------------- 

# Printed output for seed shown 

> mean(tsta.prm <= tsta.obs)             # simulated P-value with t-stat as metric 

[1] 0.0538 

> mean(mean.prm <= mean.obs)       # simulated P-value with mean as metric 

[1] 0.0538 

 

 

######################################   FIGURE 4(a,d)  ################################## 

# L. Eudey, J. Kerr, B. Trumbo (September 2009):                                         # 

# Using R to Simulate Permutation Distributions for Some Elementary Experimental Designs # 

# Code for Figure 4(a) and 4(d).  Significance level (mu=0) and Power (mu=-1/2)          # 

# Except for mu, (a) is similar to (c), (b) similar to (d).                              # 

# Plot 'main' titles and all 'text' statements added for publication.                    # 

#   Also, coordinates for 'text' statements are ad hoc for each graph.                   # 

#   In R graphics window, use full screen for proper display of 'text' statements.       #            

########################################################################################## 
 

mu = 0  # Null hypothesis true: P(Reject) = Significance level 

m = 5000;  b = xbar = std = t = numeric(m) 

set.seed(508) 

for (i in 1:m) { 

 x = rnorm(13, mu, 1) 

 b[i] = sum(x > 0) 

 xbar[i] = mean(x);  std[i] = sd(x)  

 t[i] = sqrt(13)*mean(x)/sd(x) } 
 

par(mfrow=c(2,1))  # puts 2 graphs into 1-page figure 
 

plot(xbar, std, pch=20, col="#BBDDCC",  

  main="(a) 5000 Samples from N(0, 1): n = 13", xlab="Sample Mean", ylab="Sample SD") 

condt = (t < qt(.05, 12)) 

points(xbar[condt], std[condt], pch=20, col="red") 

condb = (b < qbinom(.05, 13, .5)) 

points(xbar[condb], std[condb], pch=".", cex=2, col="blue") 

abline(a=0, b=sqrt(13)/qt(.05,12), col="darkred") 

text(.14, 1.7, "Left of line: T-test rejects", cex=.7, pos=4, col="red") 

text(.14, 1.5, "Small dots: Sign test rejects", cex=.7, pos=4, col="blue") 
 

mean(condb); mean(condt); mean(condb | condt)  # printed rejection probabilities  
 

mu = -1/2  # Null hypothesis false: P(Reject) = Power against the alternative mu = -1/2 

b = xbar = std = t = numeric(m) 

for (i in 1:m) { 

 x = rnorm(13, mu, 1) 

 b[i] = sum(x > 0) 

 xbar[i] = mean(x);  std[i] = sd(x)  

 t[i] = sqrt(13)*mean(x)/sd(x) } 

 

plot(t, b+runif(m,-.3,.3), pch=".", main="(d) 5000 Samples from N(-1/2, 1): n = 13",  

        xlab="T-Statistic", ylab="Jittered Number Positive", col="#507060") 

abline(v = qt(.05, 12), col="darkred") 

abline(h = 3.5, col="darkblue") 

text(-7, 9, "Left of Line: T-test rejects", cex=.7, pos=4, col="red") 

text(-1.5, 1, "Below Line: Sign test rejects", cex=.7, pos=4, col="blue") 

 

mean(condb); mean(condt); mean(condb | condt)  # printed rejection probabilities  
 

par(mfrow=c(1,1))  # return to normal graphics configuration 

 

 

 

####################################   FIGURE 5(a)   ##################################### 

# L. Eudey, J. Kerr, B. Trumbo (September 2009):                                         # 

# Using R to Simulate Permutation Distributions for Some Elementary Experimental Designs # 

# Code for Figure 5(a).                                                                  # 

# In R, use full width of graphics window to display result.                             # 

########################################################################################## 

 

## Corn data 
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x1 = c(166.7,   172.2,   165.0,   176.9) 

x2 = c(162.8,   142.4,   162.8,   162.4) 

x = c(x1, x2);  n1 = length(x1);  n2 = length(x2) 

t.test(x1, x2, var.eq=T)                                # pooled 

t.test(x1, x2)                                          # Welch 

 

se = sqrt((1/n1+1/n2)*((n1-1)*var(x1)+(n2-1)*var(x2))/(n1+n2-2))  # pooled 

tsta.obs = dfmn.obs/se; tsta.obs 

 

# Simulate permutation distribution 

set.seed(123) 

m = 100000     # For speed over accuracy, use 10000 

tsta.prm = numeric(m) 

 

for (i in 1:m) 

{ 

perm = sample(x, n1+n2) 

p1 = perm[1:n1]; p2 = perm[(n1+1):(n1+n2)] 

num = mean(p1) - mean(p2) 

se = sqrt((1/n1+1/n2)*((n1-1)*var(p1)+(n2-1)*var(p2))/(n1+n2-2))  #pooled 

tsta.prm[i] = num/se 

} 

 

# Display graphical results 

#par(mfrow=c(1,3)) 

 

cut = seq(-2.30, 2.30, length=21) 

hist(tsta.prm, breaks=cut, prob=T, col="wheat", xlim=c(-3.5, 3.5),  

 xlab="T-Statistic", main = "(a) Permutation Dist'n of Corn Data") 

abline(v=c(-tsta.obs, tsta.obs), lwd=2, col="red", lty="dashed") 

tt = seq(-4, 4, len=100) 

lines(tt, dt(tt, n1+n2-2), lwd=2, col="blue") 

 

 

# Print 2-sided P-values 

mean((tsta.prm >= tsta.obs)|(tsta.prm <= -tsta.obs)) # metric: pooled-t 

2/choose(8, 4)                                       # exact (for corn data) 

 

 

 

####################################   FIGURE 5(b)   ##################################### 

# L. Eudey, J. Kerr, B. Trumbo (September 2009):                                         # 

# Using R to Simulate Permutation Distributions for Some Elementary Experimental Designs # 

# Code for Figure 5(b).                                                                  # 

# Use full screen to display graph in graphics window of R.                              # 

########################################################################################## 

 

## Challenger data 

x1 = Cold = c(1, 1, 1, 3) 

x2 = Warm = c(0, 0, 0, 0, 0,  0, 0, 0, 0, 0,  0, 0, 0, 0, 0,  0, 0, 1, 1, 2) 

x = c(x1, x2);  n1 = length(x1); n2 = length(x2) 

 

dfmn.obs = mean(x1) - mean(x2); dfmn.obs  

# Simulate permutation distribution 

set.seed(508) 

m = 100000                                  # For speed over accuracy, use 10000 

dfmn.prm = numeric(m)  

for (i in 1:m) 

{ 

perm = sample(x, n1+n2);  p1 = perm[1:n1]; p2 = perm[(n1+1):(n1+n2)] 

num = mean(p1) - mean(p2);  dfmn.prm[i] = num 

} 

 

# Display graphical results 
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xv = seq(-.5, 1.6, by=.3);  cut = c(xv, 1.9) -.15 

hist(dfmn.prm, breaks=cut, col="wheat", xlab="Diff. in Means", 

 main = "(b) Perm. Dist'n of Challenger Data")    # Frequency histogram 

abline(v=dfmn.obs, lwd=2, col="red", lty="dashed") 

rs = m*round(c(2380, 3400, 2040, 1530, 855, 316, 95, 10)/choose(24,4), 3) 

points(xv, rs, pch=19, col="darkgreen")                # Expected Frequencies 

 

 

# Print right-sided P-values 

mean(dfmn.prm >= dfmn.obs) # metric: diff of means 

mean(tsta.prm >= tsta.obs) # metric: t-statistic 

105/choose(24, 4)                                      # exact (for Challenger data) 
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