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This paper describes an interactive activity that revolves around the dice-based golf game GOLO.

The GOLO game can be purchased at various retail locations or online at igolo.com. In addition, the game may
be played online free of charge at igolo.com.

The activity is completed in four parts. The four parts can be used in a sequence or they can be used
individually. Part 1 illustrates the binomial distribution. Part 2 illustrates the sampling distribution of the sample
proportion. Part 3 illustrates confidence intervals for a population proportion. Part 4 illustrates hypothesis tests
for a population proportion.

Extensions of the activity can be used to illustrate discrete probability distributions (including the geometric,
hypergeometric, and negative binomial) and the distribution of the first order statistic. The activity can be used
in an AP statistics course or an introductory undergraduate statistics course. The extensions of the activity can
be used in an intermediate undergraduate statistics course or a mathematical statistics course. Each extension is
self-contained and can be carried out without having worked through other extensions or any of the four parts of
the main activity.

1. Introduction

In this paper, we discuss an interactive activity that we use to illustrate inferences for proportions, a variety of
discrete probability distributions, and the distribution of the first order statistic. The activity is based upon
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playing the dice-based golf game GOLO. The GOLO game can be purchased online at igolo.com or at various
retail locations. Additionally, one very appealing aspect of the use of the GOLO game is that the game may be
played online free of charge at igolo.com.

We first provide some general background on the game of golf and the rules of play for the GOLO game.

1.1 Background on Golf

The Merriam-Webster online dictionary defines golf as "A game in which a player using special clubs attempts
to sink a ball with as few strokes as possible into each of the 9 or 18 successive holes on a course." Golf is
played on a tract of land designated as the course. Players walk (or often drive in motorized electric carts) over
the course, which consists of a series of holes. A hole means both the hole in the ground into which the ball is
played (also called the cup), as well as the total distance from the tee (a pre-determined area from where a ball is
first hit) to the green (the area surrounding the actual hole in the ground). Most golf courses consist of 9 or 18
holes.

The first stroke on each hole is made or hit from the tee, where the grass is well tended to facilitate the tee shot.
After teeing off, a player hits the ball again from the position at which it came to rest, either from the fairway
(where the grass is cut so low that most balls can be easily played) or from the rough (where the grass is cut
much longer than fairway grass, or which may be uncut) until the ball is hit into the cup. Many holes include
hazards, which may be of two types: water hazards (lakes, rivers, etc. ) and bunkers (sand). Special rules apply
to playing balls that come to rest in a hazard that make it undesirable to hit a ball into one of the hazards.

At some point on every hole, each player hits her ball onto the putting green. The grass of the putting green (or
more commonly the green) is cut very short so that a ball can roll easily. The cup, which is always found within
the green, has a diameter of 4.25 in. and a depth of 3.94 in. The cup usually has a flag on a pole positioned in it
so that it may be seen from some distance, but not necessarily from the tee. This flag and pole combination is
often called the pin. Once on the green, a player putts the ball into the cup in as few strokes as possible.

A hole is classified by its par. Par is the maximum number of strokes that a skilled golfer should require to
complete the hole. A skilled golfer expects to reach the green in two strokes less than par and then use two putts
to get the ball into the hole. For example, a skilled golfer expects to reach the green on a par four hole in two
strokes, one from the tee, another to the green, and then roll the ball into the hole with two putts. Traditionally, a
golf hole is either a par three, four, or five. The par of a hole is primarily, but not exclusively, determined by the
distance from tee to green. A typical length for a par three hole is anywhere between 100 to 250 yards. A par
four is generally between 251 to 475 yards. Par five holes are typically at least 476 yards, and can be as long as
600 yards. Many 18-hole courses have approximately four par-three, ten par-four, and four par-five holes. As a
result, the total par of an 18-hole course is usually around 72. One’s score on a hole relative to par is given a
nickname. Figure 1 displays the nicknames for the common scoring outcomes.

Figure 1. Some Common Golf Scores

Score relative to par Nickname Definition
-2 Eagle two strokes under par
-1 Birdie one stroke under par
0 Par or Even strokes equal to par
+1 Bogey one stroke over par
+2 Double bogey two strokes over par
+3 Triple bogey three strokes over par

1.2 Background on GOLO
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1.2.1. History of GOLO

It all started at an Irish pub in Los Gatos, California. Patrick Shea, a local PGA professional, was playing
standard dice games with his buddies. He was intrigued with the possibility of playing golf with dice, so he
placed 9 standard dice in a cup and within minutes had created the basic rules of the game now called GOLO.
The response from friends and family was overwhelming. As the game grew in popularity, a few rules and some
new features were added. For further information on GOLO, see: igolo.com.

1.2.2. What is GOLO?

GOLO consists of 9 dice, a dice cup, the rules of GOLO, scorecards, and a pencil. Figure 2 shows an image of
the GOLO game.

Figure 2. The GOLO Game

The goal of the game, as in real golf, is to shoot the lowest possible score, or "go low!" The 9 dice represent 9
golf holes on a typical golf course. Each die has twelve sides with various scores on each side - some great,
some not so good. Players roll and remove dice to "score." One can play a variety of games depending on the
number of players involved and the length of time available.

There are two par 3 dice (which are red), five par 4 dice (which are white), and two par 5 dice (which are blue).

We call the two par 3 dice Par 3A and Par 3B. The twelve equally-likely faces on the dice are numbered as
follows:

Par3A-1,3,3,3,4,4,5,5,6,6, 6,8 and
Par3B-2,3,3,3,4,4,5,5,6,6,6,7.

All five par 4 dice are the same. The twelve equally-likely faces on the par 4 dice are numbered as follows:
Par4-3,4,4,4,5,5,6,6,7,7,7,8.

We call the two par 5 dice Par 5A and Par 5B. The twelve equally-likely faces on the dice are numbered as
follows:
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Par 5A-3,5,5,5,6,6,7,7,8,8,8, 10 and
Par 5B-4,5,5,5,6,6,7,7,8,8,8,09.

For convenience, on each of the die, a par score is outlined by a square, a birdie is outlined by a circle, and an
eagle is outlined by a star.

1.2.3. How to Play GOLO

The basic rules of GOLO are very simple:

e Roll all nine dice.

e Remove your lowest score(s). You must remove at least one die, but you may remove as many as you
wish.

e Place the remaining dice in the cup and roll again.

e Continue to roll until all nine dice have been removed.

e Add up the scores for all nine dice to get your nine-hole score. (To play 18 holes, repeat the process and
add both nine-hole scores together. )

1.2.4. The GOLO Web Site

We have obtained numerous GOLO game sets and when we ask students to collect data based upon GOLO we
circulate one game set for each student in a class of 30. An alternative to purchasing a large number of GOLO
game sets is to ask students to collect GOLO data online. The GOLO web site contains a fully functional
interactive version of the GOLO game (upon visiting the web site, igolo.com, the user can select the link: Play
the online version of GOLO).

2. The Activity

The activity is completed in four parts. The four parts of the activity can be used in a sequence or they can be
used individually. In each of the subsequent sections we will describe the implementation of the four parts of the
activity. Each part will require approximately one hour of class time.

For each part of the activity students work individually or in teams of two or three students. Each student or
team needs a GOLO game set or access to the Internet so that the GOLO game may be played online.

2.1 Part 1 -- lllustrating the Binomial Distribution

In this part of the activity, students explore the properties and use of the binomial distribution. Prior to
completing this part of the activity, students have been introduced to the concept of a discrete random variable.
In addition, students have constructed probability distributions in table form.

Each student needs a copy of the Background Sheet (Appendix A.0) and the Part 1 Worksheet (Appendix A.1)

We begin the activity by introducing the GOLO game. We provide a brief background on golf and we discuss
typical golf scores. The Background Sheet contains a summary of golf scoring similar to Figure 1 (as well as a
summary of the GOLO game dice). After the brief discussion of golf scoring we mention the origin of the
GOLO game and we describe how to play the game. We illustrate the three colors of dice; and we note that a par
is outlined on each die by a square, a birdie is outlined by a circle, and an eagle is outlined by a star. We
mention that we are interested in examining outcomes of rolling the GOLO dice that produce a result of par or
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better. Thus, when we roll the dice we are looking for squares, circles, and stars.

We discuss the setting for a binomial random variable. We explain that the binomial setting is characterized by
the following:

¢ n independent observations (usually called trials),
e cach observation is categorized as either a success or a failure, and
e the probability of a success, denoted by p, is the same for each observation.

We explain that the number of successes in the # trials, denoted by X, is called a binomial random variable and
is said to have a binomial distribution.

We explain that each roll of a GOLO die can be thought of as a single trial in a binomial experiment where
success on a given trial is defined as a specified outcome or better on the up-face of the die. For example,
suppose that we define a success as par or better on a die. If n dice are rolled, the probability that X dice are par
or better follows a binomial distribution. The probability that z rolls result in x successes can be found as:

Pri¥=x1= [HJ;:I" (1- 23", where x=0,1,2,...,n and p is the probability of success on each roll; 0 <p <.
X

We ask students to answer a series of questions, assuming that a GOLO player is beginning a "new nine." First,
we ask students to explain why the number of pars or better thrown on the roll of all 9 dice can be considered a
binomial random variable. We consider each of the nine dice to represent a separate, independent trial. By
examining the GOLO dice we can see that the proportion of rolls that result in an outcome of par or better is 1/3,
since on each die, four of the twelve possible equally likely outcomes is par or better than par. Thus, the

probability of a success (par or better) on each trial is the same [ p= % = %J The random variable of interest is
the number of successes X in the n=9 trials.
We ask students to calculate the following probabilities:
e the probability of throwing exactly 2 pars or better:
g 2 7
Pr(X=2) = (1] [EJ = 02341
2303
e the probability of throwing at most 1 par or better:
g 0 ° rg 1,58
Pr(X=1)= [l] [3] + [1] [3] = 01431
D303 133
e the probability of throwing at least 1 par or better:
9 1] o
Prifz11=1-Pr(X «1)=1-Pr(¥ =)= 1—[ ](l] [2] =0.5740

03
e the probability of throwing at least 3 and no more than 6 pars or better:

g 3 5 g 4 5 (g 5 t g 6 3
PriZiX £6é)= l E + l E + l E + l E =0.6145
3l 3 3 41l = 3 SILE)1z 3 | I I B
Next, we discuss the theoretical cumulative distribution for a random variable X evaluated at a number x.

The theoretical cumulative distribution is defined as the probability of getting a value less than or equal to
x. For example, the theoretical cumulative distribution for the binomial random variable defined above
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evaluatedatx =2is Pr(X<2)=Pr(X=0)+Pr(X=1)+Pr(X=2). This corresponds to the
probability of 2 or fewer pars or better in the roll of all 9 dice. We ask students to find the theoretical
cumulative distribution for the number of pars or better in a roll of all nine dice.

We emphasize that all binomial probabilities calculated so far are theoretical probabilities because they
are based on the presumed properties of the dice (all sides equally likely), not on the results of actually
rolling the dice. We explain that probabilities based upon actually rolling the dice (i.e., on real data) are
called empirical probabilities. We have students roll all nine dice 50 times and count the number of
successes (defined by par or better) that are thrown on each roll of the nine dice. On the Part 1 Worksheet
each student completes a table similar to Table 1 below. Each student writes her results on the board. We
create columns on the board corresponding to the Number of Pars of Better, and we ask each student to
write her numbers in the appropriate row.

Table 1. Example individual data collection table.

No. of pars or better (x) 0 1 2 3 4 5 6 7 8 9
Counts 1 7 11 15 7 6 2 0 1 0

Once each student has collected her individual data for 50 rolls of the 9 dice, we tally the class data.

We define the empirical cumulative distribution for a random variable X evaluated at a number x as the
proportion of values less than or equal to x

for an actual sample. For example, the empirical cumulative distribution for the class data evaluated at x =
2 is the proportion of class rolls that resulted in 2 or fewer successes (par or better). Students use the
outcomes from the class rolls to develop an empirical cumulative distribution and complete a table on the
Part 1 Worksheet. Table 2

provides an example comparison of the theoretical and empirical cumulative distributions.

Table 2. Example comparison of theoretical and empirical cumulative distributions.

No. of Theoretical Empirical
pars or Cumulative Distribution Cumulative Distribution
better (x) Pr(X<x) ( Proportion < x)
0 .0260 30 _ 0200
1500
1 1431 240 1600
1500
2 3772 570 _ 2900
1500
3 .6503 1020 _ 6200
1500
4 .8552 1230 _ 2900
1500
5 9576 1410:9400
1500
6 9917 14?0:.9800
1500
7 .9990 1470 _ 9900
1500
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8 9999 1500:1_[}]00
1500

9 1.000 1500:1.[][][]
1500

Students compare the theoretical cumulative distribution and the empirical cumulative distribution to
determine if the binomial model proposed is a reasonable model for the class data. If the theoretical values
are close to the empirical values, then the binomial model is reasonable. For the example class data, when
we compare the two distributions, we find that most values are very close with the biggest difference
when x

= 4 where the theoretical value is 0.8551 and the empirical value is 0.8200. Thus, it seems that the
binomial model with » =9 and p

= 1/3 is a reasonable model for the number of pars or better for rolling all nine dice in GOLO.

2.2 Part 2 -- lllustrating the Sampling Distribution of the Sample Proportion

This part of the activity was designed to help students visualize the process of repeatedly sampling from a
population and using the sample data to make an inference about an unknown population proportion.
Through completion of this part of the activity, students will develop an understanding of the effect of
sampling variability on the center and spread of the sampling distribution of the sample proportion.
Students will also develop an understanding of the effect of sample size on the spread of the distribution
of the sample proportion.

Prior to completing this part of the activity, students have studied descriptive statistics, normal
distributions, and basic probability concepts.

Each student needs a copy of the Background Sheet (Appendix A.0) and the Part 2 Worksheet (Appendix
A2).

We ask students to assume that we are going to conduct a binomial experiment with # trials or that we are
going to record the value of a categorical variable for a sample of » individuals. We explain that in either
case, we can compute the statistic #

= the sample proportion; that is, the proportion of trials resulting in success (or the proportion of
individuals in a sample with a specified value of a measured categorical variable). We explain that if we
repeated the binomial experiment or took a new sample we would most likely get a different value for the
sample proportion. The sampling distribution for a sample proportion is the probability distribution of
possible values of the sample proportion for repeated samples of the same size taken from the same
population. Here, the population proportion of interest, p, is the proportion of rolls of the GOLO dice that
result in an outcome of par or better. Recall that the true value of p is 1/3.

Students are asked to utilize the data collection procedure described on the Part 2 Worksheet in order to
determine the sample proportion of rolls that are par or better for the sample sizes of n =9, 18, 36, and 72.
Rolling all 9 GOLO dice once results in a sample of size 9, rolling all 9 GOLO dice two times results in a
sample of size 18, and so on. Individual results are recorded on the Part 2 Worksheet and each student
writes her individual results on the board under an appropriately labeled column.

We treat the results of multiple rolls of the GOLO dice as independent trials. For each of the sample sizes
there will be roughly 30 sample proportion values. Collecting the data provides an opportunity for
students to see a concrete example of repeated sampling. Calculating the proportion of rolls that are par or
better for each sample reinforces the idea of a sample proportion being a random variable with values that
change from sample to sample.
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After the individual sample proportions have been calculated and the results copied onto the board
students are instructed to input the class data into the Class Data Table on the Part 2 Worksheet. Figure 3
contains stem-and-leaf plots that display typical class outcomes for the tosses of the GOLO dice.

Figure 3. Example Class Stem-and-Leaf Plots

Proportion of Rolls with Par or Better n=9

Frequency Stem & Leaf

3.00 1. 111
6.00 2 . 222222
11.00 3 . 33333333333
7.00 4 . 4444444
2.00 5 . 66
1.00 6 .7

Stem width: .10

Each leaf: 1 case(s)

Proportion of Rolls with Par or Better n=18

Frequency Stem & Leaf

1.00 Extremes (=<.11)
2.00 1. 77
4.00 2 . 2222
3.00 2 . 888
9.00 3 . 333333333
4.00 3 . 8999
4.00 4 . 4444
.00 4 .
2.00 5 .00
1.00 Extremes (>=.56)
Stem width: .10
Each leaf: 1 case(s)

Proportion of Rolls with Par or Better n=36

Frequency Stem & Leaf

1.00 1.4
4.00 1 . 9999
1.00 2.2
7.00 2 . 5558888
9.00 3 . 013333333
3.00 3 . 999
5.00 4 | 22244
Stem width: .10
Each leaf: 1 case(s)

Proportion of Rolls with Par or Better n=72
Frequency Stem & Leaf

3.00 1. 799
1.00 2 .1
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5.00 2 . 55569
10.00 3 . 2222333333
6.00 3 . 555569
5.00 4 . 00224

Stem width: .10

Each leaf: 1 case(s)

By examining the class data and answering a series of questions students begin to discover properties of
the distribution of a sample proportion. In the discussion to follow we refer to the example class data for
purposes of illustration. Students will note that the distribution of sample proportion values is centered on
the value of the population proportion. For the example class data, the calculated values of the mean of the
sample proportion distributions are 0.34, 0.33, 0.31, and 0.32 for samples of size 9, 18, 36, and 72;
respectively. Students will note that the variability of the sample proportion values is related to the sample
size, with a larger sample size resulting in smaller variability in the sample proportion values. For the
example class data, the calculated values of the standard deviation of the sample proportion distributions
are 0.13, 0.11, 0.08, and 0.07 for samples of size 9, 18, 36, and 72; respectively.

The instructor may also wish to ask students to calculate five-number summaries and construct
side-by-side boxplots to compare the distributions of the sample proportion values for the different sample
sizes. Figure 4 displays example comparative boxplots constructed from the class data. The boxplots
provide a visual aid to help reinforce the properties of the center and spread of the sampling distribution
of a sample proportion.
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Figure 4. Example Class Comparative Boxplots
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At this point we summarize the results from the analyses of the repeated sampling and discuss the
theoretical properties of the sampling distribution of a sample proportion. The mean value of the
distribution of a sample proportion is equal to the corresponding value of the proportion of the population
that was sampled from, p. The standard deviation of the distribution of a sample proportion decreases with

an increase in the sample size. Technically, the standard deviation is given by: fM And, provided
M

that the sample size is large enough ( np, n(1-p) > 10 ), the distribution of a sample proportion will be
approximately normal (bell-shaped).

2.3 Part 3 -- lllustrating Confidence Intervals for a Proportion

This part of the activity was designed to help students visualize the process of repeatedly sampling from a
population and using the sample data to construct a confidence interval for an unknown population
proportion. Through completion of this part of the activity, students will develop an understanding of how
to interpret a confidence interval and the relationship between the confidence level and confidence
interval width.

Prior to completing this part of the activity, students have studied normal distributions, basic probability
concepts, sampling distributions, and basic elements of confidence interval construction and
interpretation. Additionally, students have been introduced to the formula for an approximate confidence
interval for the population proportion.
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Each student needs a copy of the Background Sheet (Appendix A.0) and a copy of the Part 3 Worksheet
(see Appendix A.3).

If Part 2 of the activity has been completed, the data collection for Part 3 can be by-passed and the
previously collected data may be used. Otherwise, students are asked to utilize the data collection
procedure described on the Part 3 Worksheet in order to determine the sample proportion of rolls that are
par or better for the sample size of n

= 36. Recall that the true proportion of GOLO die rolls resulting in an outcome of par or better is p = 1/3.

Students are asked to construct an 80% confidence interval for the proportion of GOLO die rolls resulting
in par or better from their data for 36 trials. Each student writes her interval on the board. Figure 5
displays example class 80% confidence intervals. The shaded intervals do not cover the true proportion of
GOLO rolls resulting in par or better.

Figure 5. Example Class 80% Confidence Intervals

(.16, .34) (.23, .43) (.31, .53) (.16, .34) (.18, .38) (.23, .43)
(.21, .40) (.11,.27) (.18, .38) (.29, .49) (.11,.27) (.23, .43)
(.23, .43) (.16, .34) (.13,.31) (.07, .21) (.23, .43) (.33,.55)
(.31, .53) (.11,.27) (.18, .38) (.23, .43) (.29, .49) (.18, .38)

(.11, .27) (31, .53) (21, 41) (.33, .55) (.29, .49) (.23, 43)

For a typical class of 30 students, roughly 24 (80%) of the class confidence intervals should cover the
value of p

= 1/3. We stress that if we claim that we are 80% confident that a proportion lies within the endpoints of a
confidence interval we are saying that the endpoints of the confidence interval were calculated by a
method that gives correct results in 80% of all possible samples. We ask students to write a statement
explaining how an 80% level of confidence should be interpreted.

Students construct a 99% confidence interval for the proportion of GOLO rolls resulting in par or better
using individual data collected from 36 tosses. Class confidence intervals are displayed on the board.
Figure 6 displays example class 99% confidence intervals. The shaded interval does not cover the true
proportion of GOLO rolls resulting in par or better than par.

Figure 6. Example Class 99% Confidence Intervals

(.06, .44) (.13,.53) (.21, .63) (.06, .44) (.09, .47) (.13,.53)
(.11,.50) (.02, .36) (.09, .47) (.18, .60) (.02, .36) (.13,.53)
(.13,.53) (.06, .44) (.04, .40) (-.01, .29) (.13,.53) (.23, .65)
(.21, .63) (.02, .36) (.09, .47) (.13, .53) (.18, .60) (.09, .47)

(.02, .36) (21, .63) (.11,.51) (.23, .65) (.18, .60) (.13, .53)
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For a typical class of 30 students, roughly 29 or 30 (99%) of the class confidence intervals should cover
the value of p

= 1/3. We stress how to properly interpret a 99% confidence level and we ask students to write a
statement explaining how a 99% level of confidence should be interpreted. We ask students to write a
statement explaining how increasing the confidence level from 80% to 99% changed their confidence
interval. In order to gain more confidence in an interval, the interval will become wider. We ask students
to write an intuitive justification for the relationship between the width of a confidence interval and the
level of confidence. We ask students to give one advantage of using 99% confidence rather than 80%
confidence and to give one disadvantage. A 99% confidence interval is a highly reliable interval estimate
but it may be imprecise. An 80% confidence interval is more precise but has relatively low reliability. The
advantage of the 99% confidence interval is that it is very likely to enclose the true population proportion.
The disadvantage of the 99% confidence interval is that it may be too wide to give us a good estimate of
the value of the population proportion.

Through completing this part of the activity, students will see a demonstration of the process of repeatedly
selecting samples from a population and constructing confidence intervals for the population proportion.
Writing class results on the board allows for a discussion of the meaning of the level of confidence.
Students can see that in repeated sampling the confidence level represents the percentage of the time that
the process of constructing a confidence interval will result in an interval that successfully encloses the
true value of the population parameter. Changing the confidence level allows students to see the
relationship between level of confidence and confidence interval width.

2.4 Part 4 -- lllustrating Hypothesis Tests on a Proportion

This part of the activity was designed to help students visualize the process of repeatedly sampling from a
population and using the sample data to perform a hypothesis test on an unknown population proportion.
Through completion of this part of the activity, students will develop an understanding of how to interpret
the level of significance of a hypothesis test (Type I error rate), how to interpret the p-value of a
hypothesis test, how to interpret the Type II error rate of a hypothesis test, and the relationship between
Type I and Type II error rates.

Prior to completing this part of the activity, students have studied normal distributions, basic probability
concepts, sampling distributions, and confidence intervals. Additionally, students have been introduced to
the procedure for performing a hypothesis test on a population proportion.

Each student needs a copy of the Background Sheet (Appendix A.0) and a copy of the Part 4 Worksheet
(see Appendix A.4).

If Parts 2 or 3 of the activity have been completed, data collection for Part 4 can be by-passed and
previously collected data may be used. Otherwise, students are asked to use the data collection procedure
described on the Part 4 Worksheet in order to determine the sample proportion of GOLO rolls that are par
or better for the sample size of n

= 36. After data collection is completed, students are reminded that the true proportion of GOLO die rolls
resulting in an outcome of par or better than par is p = 1/3.

2.4.1. lllustrating Type Il Errors
Students use their GOLO data to perform two hypothesis tests of Ho : p = 1/9 versus H4 : p > 1/9. The

tests are performed with different levels of significance. Since the true value of p = 1/3, the null
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hypothesis, Ho : p = 1/9 is false. Since Ho

is false, performing these tests provides an opportunity to use simulation to illustrate properties of
p-values and Type II errors.

The first test of Hy : p = 1/9 versus H4 : p > 1/9 is performed using a level of significance o = 0.05. Each
student writes her calculated p-value on the board. Assuming a class size of 30 students, the board will
contain 30 calculated p-values. The p-values are calculated under the assumption that Hop : p = 1/9 is true
(when, in fact, p = 1/3), so the p-values will tend to be small. Figure 7 displays example class p-values.

Figure 7. Example Class P-Values

<.0001, <.0001, <.0001, <.0001, <.0001, <.0001, <.0001, <.0001, <.0001, <.0001, <.0001, <.0001,
<.0001, <.0001, <.0001, <.0001, <.0001, .0006, .0006, .0006, .0006, .0040, .0040, .0040, .0188,
0655, .0655, .0655, .0655, 2912

The point that small p-values contradict Ho is discussed with students. However, some students will not
obtain small p-values. We ask students to examine the class p-values and count the number of p-values
falling at or below the 0.05 cut-off. These p-values correspond to a rejection of Ho(a correct decision).
The remaining p-values falling above the 0.05 cut-off represent a failure to reject Ho (a Type II error).
Since 30 samples are taken, and 30 tests are performed, students can see that some samples result in a
correct decision and other samples result in an incorrect decision (Type II error). Students are asked to
calculate the fraction of incorrect decisions to obtain a simulated value for the Type II error rate, . For
the example class data the simulated S

value is 5/30 = 0.17. We ask students to explain how to interpret a Type II error rate. If we repeatedly
perform the procedure of selecting a sample and using the sample data to test a hypothesis about a
population parameter, the Type II error rate is the percentage of the samples that would lead us to fail to
reject a false null hypothesis.

The second test is performed using a = 0.20. The p-value is the same as for the first test; however, the o
value has been increased. We ask students to examine the class p-values and count the number of p-values
falling at or below the 0.20 cut-off. These p-values correspond to a rejection of Ho (a correct decision).
The remaining p-values falling above the 0.20 cut-off represent a failure to reject Ho (a Type II error).
Students are asked to calculate the fraction of non-rejections of Hp out of the 30 tests to obtain a simulated
value for f. For the example class data the simulated f value is 1/30 = 0.03. In examining the class results,
students will note that an increase in the level of significance o results in a decrease in the Type II error
rate. We ask students to explain how the level of significance and Type II error rates are related. The level
of significance is inversely related to the Type Il error rate. If, for instance, we decrease the value of a, we
are making it more difficult to reject the null hypothesis, which in turn will increase the chances of failing
to reject a false null hypothesis; therefore, increasing the Type II error rate.

2.4.2. lllustrating Type | Errors
Students use their GOLO data to perform two hypothesis tests of Ho : p = 1/3 versus H4 : p # 1/3. The

tests are performed with different levels of significance. Since the true value of p = 1/3, performing these
tests provides an opportunity to illustrate properties of p-values and Type I error.

The first test of Hp : p = 1/3 versus Hy : p # 1/3 is performed using o = 0.05. The second test is performed
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using o = 0.20. The p-values are calculated under the assumption that Hg : p = 1/3 is true, so the p-values
will tend to be large. Figure 8 displays example class p-values.

Figure 8. Example Class P-Values

0155, .0367, .0367, .0367, .1615, .1615, .1615, .1615, .2501, .2501, .2501, .3077, .3077, .3077,
4413, 4413, 4413, 5222, 5222, 5222, .5222, .7566, .7949, 1.000, 1.000, 1.000, 1.000, 1.000,
1.000, 1.000

The point that large p-values do not contradict Hy is discussed with students. However, some students will
not obtain large p-values. We ask students to write their p-values on the board. Each p-value falling at or
below each of the level of significance values (a = 0.05 and a = 0.20) represents a rejection of Ho (a Type
I error). Each p-value falling above the cut-offs represents a failure to reject Hp a correct decision). Since
30 samples are taken, and 30 tests are performed, students can see that some samples result in a correct
decision and other samples result in an incorrect decision (Type I error). Students are asked to calculate
the fraction of rejections of Hy

out of the 30 tests to obtain a simulated value for each level of significance. For the example class data the
simulated Type I error rates are 4/30 = 0.13 and 8/30 = 0.27 corresponding to levels of significance of o =
0.05 and a

= 0.20; respectively. We ask students to explain how to interpret a Type I error rate. If we repeatedly
perform the procedure of selecting a sample and using the sample data to test a hypothesis about a
population parameter, the Type I error rate is the percentage of the samples that would lead us to reject a
true null hypothesis.

In this part of the activity we use the same data set to perform two different hypothesis tests at two
different levels of significance. The instructor should emphasize that the level of significance, null
hypothesis, and alternative hypothesis should be determined prior to data collection. We use the same data
for multiple hypothesis tests to save time. Technically, we should have collected four separate data sets,
one for each of the four tests conducted.

3. Extensions

In this section we present extension GOLO activities that can be used to illustrate the geometric
distribution, hypergeometric distribution, negative binomial distribution, and the distribution of the first
order statistic. Each extension activity stands alone and can be done without having completed any of
Parts 1 through 4 of the main activity.

3.1 llustrating the Geometric Distribution

In this extension students explore the properties and use of the geometric distribution. Prior to completing
this extension, students have been introduced to the concept of a discrete random variable. In addition,
students have constructed probability distributions in table form.

Each student needs a copy of the Background Sheet (Appendix A.0) and the Extension 1 Worksheet
(Appendix B.1)

The GOLO game often ends by needing to roll exactly one die. Suppose that you are playing GOLO and
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have come down to having only one die remaining. For some inexplicable reason the "golfers" that you
are playing against have left the table (obviously assuming that your integrity is unflappable). Further, you
decide that you are going to cheat by rolling the die until a par or better is obtained! This leads us to what
is called the geometric distribution.

The setting for a geometric random variable is:

o rindependent observations (usually called trials) where (unlike the binomial setting) » is not known
beforehand,

o each observation is categorized as either a success or a failure, and

o the probability of a success, denoted by p, is the same for each observation.

The number of trials R
until the first success is called a geometric random variable and is said to have a geometric distribution.

The probability that it takes r trials until the first success is: Pr(R=r) = p(l—p)r'1 ,where r=1,23,...;0<p
<l

On the Extension 1 Worksheet students comment on the characteristics of the geometric setting and
explain why the number of rolls of a single die until a par or better is obtained can be considered a
geometric random variable. Each roll of the die is an independent trial whose outcome can be categorized
as either a success (par or better) or a failure. The probability of a success is the same for each trial and
the number of trials required to obtain an outcome of par or better is not known beforehand. The
probability of success on any trial is p

= 1/3. Furthermore students argue that it does not matter which die is left, because there is a 1/3 chance of
getting par or better on each of the 9 dice.

Students calculate the following probabilities:

1-1
o the probability that a par or better is obtained on the first roll of the die: Pr(g =1y= 1[1_ l] = 1
3 3 3

o the probability that the die must be rolled at most twice to get par or better:

-1 2-1
pe(reoy=2[1- L] «1f1-l] -2
300 3) 3l 3 o

o the probability that the die must be rolled at least twice to get par or better:

PriR=2)=1-Fr(R -::2}=1—Pr(f?.=1j=1—%:E

3
o the probability that the die must be rolled at least 3 times and no more than 5 times to get a par or
better:
+1 41 51
Pazr=5 -2l L] LIf2Ll) e
3 3 3 3 3 3 243

Students find the first ten values for the theoretical cumulative distribution for the number of rolls until a
par or better is achieved.

In order to examine the empirical cumulative distribution, we ask each student to roll one die repeatedly
until obtaining a par or better and keep track of the number of rolls that it takes. Each student repeats this
process 10 times and on the Extension 1 Worksheet completes a table similar to Table 3.
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Table 3. Example individual data collection table.

Attempt 1 2 3 4 5 6 8 9 10
No. of rolls to get par 1 5 1 2 2 4 1 8 1 1
or better (r)

Once each student has completed 10 repetitions, individual results are copied onto the board in order to
obtain class results. Students use the outcomes from the entire class (consisting of 30 students) to develop
an empirical cumulative distribution by completing a table on the Extension 1 Worksheet. Table 4
provides an example empirical cumulative distribution.

Table 4. Example comparison of theoretical and empirical cumulative distributions.

No. of rolls to Theoretical Empirical
get par or Cumulative Distribution Cumulative Distribution
better () Pr(R<r) (Proportion <r)

1 l:.3333 E: 3233
3 300

2 2 _ 5555 172 _ 5933
9 300

3 15 037 2la _ 067
300

4 5 _ 8025 239 _ 967
51 300

> 211 = 3683 27 = 8567
243 300

6 @:9122 E=.89IZIIZI
729 300

7 203 ay1s 217 _ a933
2187 300

8 8305 _ a61g 287 _ 9567
£561 300

9 171 _ o 291 9700
19683 300

10 58025 _ oo 293 _ 9767
59049 300

Students compare the theoretical cumulative distribution and the empirical cumulative distribution to
determine if the geometric model proposed is a reasonable model for the class data. If the theoretical
values are close to the empirical values, then the geometric model is reasonable. For the example class
data, when we compare the two distributions, we find that most values are very close with the biggest

difference when x
= 6 with the theoretical value of 0.9122 and the empirical value of 0.8900. Thus, it seems that the

geometric model with p
= 1/3 is a reasonable choice for the number of rolls of a GOLO die until a par or better is achieved.
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3.2 lllustrating the Hypergeometric Distribution

In this extension, students explore the properties and use of the hypergeometric distribution. Prior to
completing this extension, students have worked with discrete random variables and have learned
counting techniques.

Each student needs a copy of the Background Sheet (Appendix A.0) and the Extension 2 Worksheet
(Appendix B.2)

When a GOLO die rolls off of the designated field of play (for example, the table), it is out of bounds.
Whenever dice are rolled out of bounds, the rules of GOLO stipulate that a player must add a two stroke
penalty to each die that rolls out of bounds. The rolls that are in bounds are voided, and the player must
select at least one of the out-of-bounds dice. Suppose that all 9 dice are rolled and M of the dice roll out of
bounds. Let X denote the number of colored

dice (i.e. par 3 and par 5 dice) that roll out of bounds. This leads us to what is called the hypergeometric
distribution.

The setting for a hypergeometric random variable is characterized by the following:

o a finite population of N items,
o of which M have a certain characteristic, and
o a sample of size n is drawn without replacement (i.e. items cannot be resampled).

In this setting the number of items X

in the sample that have the characteristic is said to have a hypergeometric distribution. The probability of
x items having a characteristic in a sample of size n drawn from a population of size N that has M items
with the characteristic can be found as:

X n—-x

iy
Pr(X=ux) :T’ where max (0,n-N+M)<x<min(n, M).
)
We ask students to consider a roll in the game of GOLO of all 9 dice of which 4 are colored dice. Students

are told to assume that 3 of the dice roll out of bounds. Students identify the values of N =9 dice rolled, M
= 4 colored dice rolled, and » = 3 dice rolled out of bounds.

Students explain the rationale of the lower bound of x > max ( 0, n - N+ M) and the rationale for the
upper bound of X <min ( n, M) for the probability statement Pr ( X = x ) where the random variable X
represents the number of colored dice that roll out of bounds. Since we cannot have a negative number of
colored dice rolling out of bounds, x > 0. Since we are selecting n - x dice out of N- M dice,n-x <N-M
son-N+ N+ M<x. Thusx >max (0, n- N+ M). Since x is the number of colored dice that roll out of
bounds, x cannot be greater than the total number of dice selected, n, and x cannot be greater than the total
number of colored dice, M. Thus, x <min (n, M).

Students calculate the following probabilities:

o the probability that none of the colored dice are out of bounds:
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o))
Pri¥x=0) =H= 0.11%0

g

o the probability that at most 1 of the colored dice are out of bounds:

0\ 3-0 1/13-1
Prif 2l =P =+PrlX =1 = 5 + 5 =0.5952
4
o the probability that at least 1 of the colored dice are out of bounds:
41 9-4

oflz-0
Pr(X > =1-Pr(X¥ <{1)=1-Pr(X =0y =1- - 0.8810

9

3
Students find the theoretical cumulative distribution for the number of colored dice that are rolled out of
bounds and on the Extension 2 Worksheet they complete a table similar to the first two columns of Table

5. For comparison, SPSS was used to simulate 300 trials and results are given in the third column of Table
5.

Table 5. Theoretical cumulative distribution.

No. of colored Theoretical Empirical Cumulative
dice out of Cumulative Distribution Distribution
bounds (x) Pr(X<x) Pr(X<x)

0 1190 1067
1 .5952 .5800
2 9523 9667
3 1.000 1.000

3.3 lllustrating the Negative Binomial Distribution

In this extension, students explore the properties and use of the negative binomial distribution.
Prior to completing this part of the activity, students have worked with binomial random variables.

Each student needs a copy of the Background Sheet (Appendix A.0) and the Extension 3 Worksheet
(Appendix B.3).

One of the two blue GOLO dice has the potential of rolling an eagle. Suppose that this blue die is
successively rolled until R ( R = 1,2,... ) eagles are rolled. Let Z denote the number of times this die is

rolled until the R eagle is rolled. This leads us to the negative binomial distribution.

The setting for a negative binomial random variable is:
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o z independent observations (usually called trials) where z is not known beforehand,
o each observation is categorized as either a success or a failure, and
o the probability of a success, denoted by p, is the same for each observation.

In this setting the number of trials Z until the R™ success is called a negative binomial random variable

and is said to have a negative binomial distribution. The probability that it takes z rolls until the R

z—1

success can be found as: Pr{Z =z) =(R ka[l—p}x_g, wherez=R, R+ 1,R+2,...;0<p<I1.

We ask students to assume that they are trying to roll the blue GOLO die named Par 5A until two eagles
are obtained. Students comment on the characteristics of the negative binomial setting to explain why the
number of rolls until two eagles are obtained can be considered a negative binomial random variable. A
trial consists of rolling the blue Par 5A die. Trials are independent and each results in either a success (an
eagle is obtained) or a failure (an eagle is not obtained) with the success probability staying the same from
trial to trial ( p = 1/12 ). Since we are interested in rolling the die until we obtain R = 2 successes, the
number of trials Z is not fixed and Z has a negative binomial distribution.

Students calculate the following probabilities:

o the probability that two successive rolls result in two eagles:

2_1 2 a-2
Pr(Z =2) = L N ST B Y
-1l 12) VT 12) T

o the probability that the die must be rolled at least three times in order to get two eagles:
Pr(Z>3)=1-Pr(Z<2)=1-Pr(Z=2)=0.9931
o the probability that the second eagle occurs on the tenth roll:

10-1 : -
Pr(Z =10) = (i] (1-l] _ 0.0312.
2-1 12 1z

Students find the theoretical cumulative distribution for the number of trials needed to obtain two
eagles and on the Extension 3 Worksheet they complete a table similar to the first two columns of
Table 6. For comparison, SPSS was used to simulate 500 trials and results are given in the third
column of Table 6.

Table 6. Theoretical cumulative distribution.

No. of trials needed to Theoretical Empirical Cumulative

obtain 2 successes (x) Cumulative Distribution Distribution
Pr(X<x) Pr(X<x)

2 .0069 .0060

.0197 .0180

4 .0372 .0340

118 .9996 9980

119 .9996 9980

120 .9997 9980

The instructor might wish to have students collect some data to illustrate the hypergeometric and negative
binomial distributions. However, to save classroom time, a complete simulation done with a computer

19 of 37 8/13/2009 2:06 PM



Journal of Statistics Education, v17n2: Paul Stephenson, Mary Richardso... http://www.amstat.org/publications/jse/v17n2/stephensonpdf.html

software package might be a more practical approach for data collection.

3.4 lllustrating the Distribution of the First Order Statistic

In this extension, we discuss how students in a mathematical statistics course can use GOLO to explore
the properties of the distribution of the first order statistic. Prior to completing this part of the activity,
students have studied distribution theory associated with order statistics.

Each student needs a copy of the Background Sheet (Appendix A.0) and the Extension 4 Worksheet
(Appendix B.4)

To begin the GOLO game all 9 dice are rolled, and a player selects the die (or dice) with the minimum
score relative to par. Let 7 denote the set of labels for the 9 dice such that /= {3A, 3B, 4A, 4B, 4C, 4D,
4E, 5A and 5B}. Two of the dice (3A and 5A) have the potential of rolling an eagle. The best outcome for
the remainder of the dice is birdie. Let X34, X3B, X4A, ..., X4E, X5A, X5B be the 9 independent variates
where X3A and X5 have cumulative distribution function Fg ( x ) and X3B, X4A, ..., X4E and X5B have
cumulative distribution function Fg ( x ).

We ask students to develop expressions for both Fg ( x ) and Fp (x ). Here, we consider values below par

to be negative, values at par to be zero, and values above par to be positive (see Figure 1). Then, the
corresponding expressions are:

(0 X <2 (10 -1
1112 —2=x <0 1112 -1=x <0
412 O=x<«l 4112 D=x <1
FE{x]=<6f12 l=x <2 and Fﬂ{x]=<6f12 1= x <2
Bil2 2= x <3 8/12 2=x <3
11412 Az x<h 11412 3=x<d
12412 x=5 12412 x=4

We then ask students to develop an expression for the cumulative distribution of the first order statistic,
denoted by X(1). The corresponding expression is given by:

Fy(x)=Pr{X =x)=1-Pr{X, = x)

=1-Pr{X., >z, X5 > x)
=1-][Pr{X; = x)
:1_[1_F}3(x:'}2 {1—F3{x}]?
where i £/ ={34, 3B, 44, 4B, 4C, 4D, 4E, 54, 5B}

Students are asked to use EXCEL to compute the values for F(1)(x) when x =—2,—1,..., 5. Students use
EXCEL to calculate the second column in Table7. We then ask students to use EXCEL to compute the
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values for the probability distribution of the first order statistic (denoted by p(1)(x)) and compute the
expected value of this distribution. Students use EXCEL to calculate the third and fourth columns in Table

7.

Table 7. Computed values associated with the first order statistic.

x F1)(x) P(1)x) X * p(1)(x)
-2 0.1597222222222220 0.1597222222222220 -0.319444444
-1 0.5430139404895350 0.3832917182673130 -0.383291718
0 0.9739877051262510 0.4309737646367160 0.000000000
1 0.9980468750000000 0.0240591698737489 0.024059170
2 0.9999491947365750 0.0019023197365747 0.003804639
3 0.9999999998061930 0.0000508050696185 0.000152415
4 1.0000000000000000 0.0000000001938067 7.75227E-10
5 1.0000000000000000 0.0000000000000000 0.000000000
Expected Value of the First Order Statistic -0.674719937

In order to examine the expected value empirically, we ask each student to roll the 9 GOLO dice 100
times and keep track of the minimum score relative to par on each roll. In an effort to demonstrate the
Law of Large Numbers, each student is asked to compute the running average after each roll and then use
a statistical software package to graph these running averages. We have demonstrated the type of results
that the students can expect to obtain in Figure 9. Note in this simulation the final running average was:

—0.6800 (a value that is converging on the computed expected value of —0.6747).
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Figure 9. Example Demonstration of the Law of Large Numbers
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4. Conclusions

Our experience with GOLO indicates that nearly everyone finds the game intrinsically interesting. The
variety in the dice and the connection to a competitive sport make the game more interesting than
something like Yahtzee where the dice have identical faces. Analyzing the GOLO dice roll data is a fun
and interesting way to introduce the binomial distribution and the sampling distribution of a sample
proportion. Active data collection helps reinforce the idea of repeated sampling with different samples
producing different results.

This paper describes a number of scenarios that revolve around GOLO that can be used to demonstrate
inferences for proportions and other probability concepts.

Proportions of rolls resulting in par or better can be calculated for different numbers of rolls. Changing the
sample size allows students to formulate ideas about the center and spread of the distribution of a sample
proportion and to determine the relationship between sample size and variability. The instructor can refer
to this activity when discussing the distribution of a sample proportion from a theoretical perspective.
Students have examined empirical properties of the sampling distribution and will be ready to advance to
a discussion of the theoretical properties.

Constructing and plotting class confidence intervals aids in the correct interpretation of the confidence
level. Repeated hypothesis testing helps students understand the ideas of p-value and Type I and Type 11
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CITors.

In addition, concepts from the GOLO game can be used to illustrate discrete probability distributions and
the distribution of the first order statistic.

Appendix A: Activity Worksheets

A.0 Background Sheet -- How LO can you GO?
Background on GOLO and Golf

A golf hole is classified by its par. Par is the maximum number of strokes that a skilled golfer should
require to complete the hole. One’s score relative to par on a hole is given a nickname.

The table below displays the nickname for the common scoring outcomes.

Score relative to par Nickname Definition
-2 Eagle two strokes under par
-1 Birdie one stroke under par
0 Par or Even strokes equal to par
+1 Bogey one stroke over par
+2 Double bogey two strokes over par
+3 Triple bogey three strokes over par

The goal of the GOLO game, as in real golf, is to shoot the lowest possible score. The 9 dice represent 9
golf holes on a typical golf course. Each die has twelve sides with various scores on each side.

There are two par 3 dice (which are red), five par 4 dice (which are white), and two par 5 dice (which are
blue). We call the two par 3 dice Par 3A and Par 3B. The twelve equally-likely faces on these dice are
numbered as follows:

Par3A-1,3,3,3,4,4,5,5,6,6,6,8 and Par3B-2,3,3,3,4,4,5,5,6,6,6,7.

All five par 4 dice are the same. The twelve equally-likely faces on the par 4 dice are numbered as
follows:
Par4-3,4,4,4,5,5,6,6,7,7,7,8.

We call the two par 5 dice Par 5A and Par 5B. The twelve equally-likely faces on the dice are numbered
as follows:
Par 5A-3,5,5,5,6,6,7,7,8,8,8,10 and Par5B-4,5,5,5,6,6,7,7,8,8,8,09.

For convenience, on each of the die, a par score is outlined by a square, a birdie is outlined by a circle,
and an eagle is outlined by a star.

The basic rules of GOLO are very simple:

Step 1. Roll all nine dice.

Step 2. Remove your lowest score(s). You must remove at least one die, but you may remove as many
as you wish.

Step 3. Place the remaining dice in the cup and roll again.

Step 4. Continue to roll until all nine dice have been removed.

Step 5.
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Add up the scores for all nine dice to get your nine-hole score. (To play 18 holes, repeat the process and
add both nine-hole scores together.)

A.1 Worksheet 1 -- How LO can you GO? Binomial Distribution

The binomial setting is characterized by the following:

o n independent observations (usually called trials),

o each observation is categorized as either a success or a failure, and

o the probability of a success, denoted by p, is the same for each observation.
In this setting the number of successes, denoted by X, is called a binomial random variable and is said to
have a binomial distribution.

Each roll in the game of GOLO can be thought of as a binomial experiment where success on a given die
is defined as a specified outcome or better on the up-face. For example, suppose that we define a success
as par or better on a die. If n dice are rolled, the probability that X dice are par or better follows a binomial
distribution. The probability that # rolls result in x successes can be found as: Pr (X =x)

= (H]p”(l — )7, where x = 0,1,2,...,n and p is the probability of success on each roll; 0 < p < 1.
X

Questions: Assume that a player is beginning a "new nine" to complete the following questions.

1. Above we wrote, "If n dice are rolled, the probability that X

dice are par or better follows a binomial distribution." Comment on the three characteristics of the
binomial setting to explain why the number of pars or better obtained by rolling the 9 GOLO dice can be
considered a binomial random variable.

2. What are the values of the number of trials » and the probability of success p on any trial?

3. What is the probability that you throw exactly 2 pars or better?

4. What is the probability that you throw at most 1 par or better?

5. What is the probability that you throw at least 1 par or better?

6. What is the probability that you throw at least 3 pars or better and no more than 6 pars or better?

The theoretical cumulative distribution for a random variable X evaluated at a number x is defined as
the probability of getting a value less than or equal to x. For example, the theoretical cumulative
distribution for the binomial random variable defined above evaluated at x =2 is: Pr(X<2)=Pr(X=0
)+Pr(X=1)+Pr(X

= 2). This corresponds to the probability of 2 or fewer pars or better in the roll of all 9 dice.

7. Find the theoretical cumulative distribution for the number of pars or better in a roll of all nine dice.
Complete the second column of the Theoretical vs. Empirical Cumulative Distributions table with the
correct probabilities.

Theoretical vs. Empirical Cumulative Distributions

No. of Theoretical Empirical
pars or Cumulative Distribution Cumulative Distribution
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better (x) Pr(X<x) (Proportion < x)
0

—_—

O o Qf N | | W[

The probabilities found in questions 3, 4, 5, 6, and 7 are called theoretical probabilities because they are
based on the properties of the dice, NOT on the results of actually rolling the dice. Probabilities based on
actually rolling the dice (i.e. , on real data) are called empirical probabilities.

8. Roll all nine dice 50 times and count the number of successes (defined by par or better) that are thrown
on each roll of the nine dice. Recall that outcomes of par or better on the dice are outlined by circles,
squares, and stars. Complete the Individual Empirical Results table. Write your results on the board.
Wait until the entire class' numbers of successes are tallied to continue.

Individual Empirical Results

No. of pars or better (x) 0 1 2 3 4 5 6 7 8 9
Counts

The empirical cumulative distribution for a random variable X evaluated at a number x is defined as the
proportion of values less than or equal to x

for an actual sample of data. For example, the empirical cumulative distribution for the class data
evaluated at x = 2 is the proportion of the class’ rolls that resulted in 2 or fewer pars or better.

9. Use the outcomes from the class’ rolls to develop an empirical cumulative distribution. Complete the
third column of the table in Question 7 with the correct proportions.

10. Compare the theoretical cumulative distribution (from Question 7) and the empirical cumulative
distribution (from Question 9). Is the binomial model proposed a reasonable model for the class’ data?
Explain.

A.2 Worksheet 2 -- How LO can you GO? Sampling Distribution of the Sample
Proportion

Purpose:
This activity is intended to illustrate properties of the sampling distribution of a sample proportion.
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Statistical Guide:
Suppose that we conduct a binomial experiment with # trials. Or, suppose we record the value of a
categorical variable for a sample of » individuals. In either case, we can compute the statistic #

= the sample proportion; that is, the proportion of trials resulting in success (or the proportion of
individuals in a sample with a specified value of a measured categorical variable). If we repeated the
binomial experiment or took a new sample, we would probably get a different value for the sample
proportion. The sampling distribution for a statistic is the probability distribution of possible values of
the statistic for repeated samples of the same size taken from the same population.

Instructions:
Suppose that you were to roll a GOLO die an extremely large number of times. What proportion of the
rolls would you expect to be par or better? p =

What if we were not able to examine the die and calculate the proportion of rolls resulting in par or
better? What if we were stuck rolling the die and using the results from our rolls to estimate the
proportion of all rolls that would result in a par or better? That is, what if we wanted to use the sample
proportion of rolls that are par or better (which we will denote by # ) in order to estimate the population

proportion of rolls that are par or better (which we will denote by p)?

Consider the outcome of rolling the GOLO dice as an experiment with 9 trials. Roll the GOLO dice once
and count the number of rolls that are par or better (outcomes outlined by circles, squares, or stars). Write
the number

of rolls that are par or better in the appropriate location on the Individual Data Table. Calculate the
proportion

of rolls that are par or better and write the value in the appropriate location on the Individual Data Table.
Conduct this experiment three more times. Each time, double the number of times that you roll the GOLO
dice. For example, the second time, roll the 9 GOLO dice twice in order to obtain 18 trials, and so on.

Individual Data Table

9 Trials 18 Trials 36 Trials 72 Trials

Number of

Dice Resulting in
Par or Better
than Par
Proportion of
Dice Resulting in
Par or Better
than Par

Copy your sample proportions onto the board in the appropriately labeled columns. Use two
decimal places.

Questions:

1. Input the class proportion
of rolls resulting in par or better in the Class Data table. Record the proportions as decimals with two
significant digits.
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Class Data
Sample \ n=9 \n=18 \n=36 \n=72 \ Sample \ n=9 \n=18 \n=36 \n=72
1 16
2 17
3 18
4 19
5 20
6 21
7 22
8 23
9 24
10 25
11 26
12 27
13 28
14 29
15 30

2. Answer the following questions using the Class Data. Remember that p = 1/3.
(a) For each sample size calculate the mean and median of the sample proportions.

(b) What do you think is the relationship between the center of the distribution of the sample proportions
and the value of the population proportion?

(c) For each sample size calculate the standard deviation of the sample proportions.

(d)
For which sample size is the standard deviation the largest and for which sample size is the standard
deviation the smallest? Why do you suppose this happens?

(e) Construct comparative boxplots to display the distributions of the sample proportions for the four
sample sizes.

A.3 Worksheet 3 -- How LO can you GO? Confidence Interval for a Proportion
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Purpose:
This activity is intended to illustrate properties of confidence intervals and constructing a confidence
interval for a proportion.

Statistical Guide:
A (1-a)100% confidence interval for p, the population proportion, is given by:

ntz, 2A7P) here Za
] 7 :

is an appropriate percentile of the standard normal distribution, # is the size

-

of the random sample, # is the sample proportion, and both ##, »(1— g1 =10

This interval gives a range of values within which we expect the population proportion, p, to fall. The
interval is based on just one sample proportion. The sample proportion, #, is a point (single number)

estimate for the population proportion, p. A confidence interval estimate for the population proportion,
P, 1s an interval of values, computed from the sample data, that we believe contains p. The confidence
level is the probability that the estimation method will give an interval that contains the parameter (p, in
this case). The confidence level is denoted by 1 - o, where common values of a are 0.10, 0.05, and 0.01,
corresponding to 90%, 95%, and 99% confidence, respectively.

Instructions:
Suppose that you were to roll a GOLO die an extremely large number of times. What proportion of the
rolls would you expect to be par or better? p =

What if we were not able to examine the die and calculate the proportion of rolls resulting in par or
better? What if we were stuck rolling the die and using the results from our rolls to estimate the
proportion of all rolls that would result in a par or better? That is, what if we wanted to use the sample
proportion of rolls that are par or better in order to estimate the population proportion of rolls that are par
or better?

Consider the outcome of rolling the GOLO dice as an experiment with 9 trials. Roll the GOLO dice four
times in order to obtain 36 trials. Keep track of the number of rolls that are par or better (outcomes
outlined by a circle, square, or a star). Calculate the proportion of rolls that are par or better.

sample proportion of rolls resulting in par or better: # =

Questions: Remember thatp=1/3

1. Use your data from 36 trials (n

= 36) to construct an 80% confidence interval for the proportion of rolls resulting in par or better. Once
you have constructed your confidence interval, write your confidence interval on the board. On the board,
you will see all of the confidence intervals constructed by the class.

(2) How many of the confidence intervals include the value of p = 1/3? What percent is this?
(b) What percent of the confidence intervals did we expect to include the value of p = 1/3?

(c) Explain, using complete sentences, how to interpret a level of confidence of 80%.

2. Use your data from 36 trials (n
= 36) to construct a 99% confidence interval for the proportion of rolls resulting in par or better. Once you
have constructed your confidence interval, write your confidence interval on the board. On the board, you
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will see all of the confidence intervals constructed by the class.

(2) How many of the confidence intervals include the value of p = 1/3? What percent is this?
(b) What percent of the confidence intervals did we expect to include the value of p = 1/3?
(c) Explain, using complete sentences, how to interpret a level of confidence of 99%.

(d) Explain, using complete sentences, how increasing the confidence level from 80% to 99% changed
the confidence intervals.

(€)
Explain, using complete sentences, an intuitive justification for the relationship between the width of the
confidence intervals and the level of confidence.

(f) Give one advantage of using 99% confidence rather than 80% confidence. Give one disadvantage.

A.4 Worksheet 4 -- How LO can you GO? Hypothesis Test on a Proportion

Purpose:
This activity is intended to illustrate properties of hypothesis testing and performing hypothesis tests on a
proportion.

Statistical Guide:
We want to test hypotheses about the population proportion p. The null hypothesis is Hy : p = po , where

po 1s the hypothesized value for p. The data are assumed to be a random sample of size n from the
population, where » must be large enough so that npg > 10 and n (1 - pg ) > 10. From the sample, we
calculate the sample proportion, # We base our decision about p on the standardized sample proportion,
_ P-py
|I #,(1— p,) - This z-score is called the test statistic and its distribution under H is approximately
#

standard normal.

We calculate the p-value for the test, which depends on how the alternative hypothesis is expressed:

(1) If H4 : p > po , then the p-value is the area to the right of the observed test statistic under the Ho
model.

(2) If Hq : p <po , then the p-value is the area to the left of the observed test statistic under the Hp model.

(3) IfHq :p #po
, then the p-value is the sum of the area to the left of negative the absolute value of the observed test
statistic and the area to the right of the absolute value of the observed test statistic under the Hp model.

The p-value is the probability, computed under the assumption that H is true, of obtaining a test statistic
value at least as favorable to HA as the value that actually resulted from the data. Ho is rejected if the
p-value is small enough.

Rejecting the null hypothesis when in fact it is true is called a Type | error. The significance level, a , is
the chance of committing a Type I error. Hy is rejected if the p-value < a. Failing to reject the null
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hypothesis when in fact it is not true is called a Type Il error. The chance of committing a Type II error
is denoted £ .

Instructions:

Consider the outcome of rolling the GOLO dice as an experiment with 9 trials. Roll the GOLO dice four
times in order to obtain 36 trials. Keep track of the number of rolls that are par or better. Calculate the
proportion of rolls that are par or better.

sample proportion of rolls resulting in par or better: # =

Questions: Remember thatp=1/3.

1. Based upon your sample proportion of rolls resulting in par or better, perform a test of: Hy: p=1/9
versus Hy : p>1/9. Note: Ho is false. A correct decision would be to reject Hp. An incorrect decision
would be to fail to reject Hp. (This would be a Type II error.)

(a) Use a 5% level of significance (o = 0.05 ).

calculated test statistic =

p-value =

(Write your p-value on the board. Use 4 decimal places.)
decision =

P(Type 11 error) = B. Type Il Error Rate for the class =

(b) Use a 20% level of significance (o= .20 ).

calculated test statistic =

p-value =

decision =

P(Type II error) = B. Type II Error Rate for the class =

(©)

Explain, using complete sentences, how to interpret a Type Il error rate in terms of repeatedly performing
the procedure of selecting a sample and using the sample data to test a hypothesis about a population
parameter.

(d)
Explain, using complete sentences, how the level of significance, a, is related to the Type II error rate ( 3
). In addition, give an intuitive explanation as to why this relationship holds.

2. Based upon your sample proportion of rolls resulting in par or better than par, perform a test of: Hop : p
=1/3 versus Hq : p# 1/ 3. Note: Hy is true. A correct decision would be to fail to reject Hy. An
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incorrect decision would be to reject Hp. (This would be a Type I error.)
(a) Use a 5% level of significance ( o= 0.05).

calculated test statistic =

p-value =

(Write your p-value on the board. Use 4 decimal places.)

decision =

expected number of rejections of H for the class =

number of rejections of Ho for the class =

(b) Use a 20% level of significance (o = .20 ).
calculated test statistic =

p-value =

decision =

expected number of rejections of H for the class =

number of rejections of Hy for the class =

(c) Explain, using complete sentences, how to interpret a Type I error rate in terms of repeatedly
performing the procedure of selecting a sample and using the sample data to test a hypothesis about a
population parameter.

Appendix B: Extensions

B.1 Extension 1 Worksheet -- How LO can you GO? Geometric Distribution

Often in GOLO the game ends by needing to roll exactly one die. You’ve used up 8 of the 9 dice and are
left with one die. You roll that die and just hope that it turns out to be a par or better, because you’ve got
to take whatever it is. This leads us to what is called the geometric distribution.

The setting for a geometric random variable is characterized by the following:

o r independent observations (usually called trials) and unlike the binomial setting 7 is not known
beforehand,

o each observation is categorized as either a success or a failure, and

o the probability of a success, denoted by p, is the same for each observation.
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In this setting the number of trials R
until the first success is called a geometric random variable and is said to have a geometric distribution.

The probability that it takes 7 rolls until the first success can be found as: Pr(R=r)=p(1-p)""~ 1,
where r=1,23,...;0<p<1.

Questions:

Suppose that you are playing GOLO and have come down to having only one die remaining. For some
inexplicable reason the "golfers" that you are playing against have left the table (obviously assuming that
your integrity is unflappable). You decide to cheat by rolling the die until a par or better is obtained!

1.
Comment on the characteristics of the geometric setting to explain why the number of rolls until you
throw a par or better can be considered a geometric random variable.

2. What is the value of the probability of success p on any trial? Does it matter which die is left?
3. What is the probability that you get a par or better on the first roll of the die?

4. What is the probability that you roll the die at most twice to get par or better?

5. What is the probability that you roll the die at least twice to get par or better?

6.
What is the probability that you roll the die at least 3 times and no more than 5 times to get par or better?

7.

Find the first ten values for the theoretical cumulative distribution for the number of rolls until a par or
better is achieved. Complete the second column of the Theoretical vs. Empirical Cumulative Distributions
table with the correct probabilities.

Theoretical vs. Empirical Cumulative Distributions

No. of rolls Theoretical Empirical
to get par Cumulative Distribution Cumulative Distribution
or better (») Pr(R<r) (Proportion <r)
1
2
3
4
5
6
7
8
9
10
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8.
Roll one die repeatedly until you get a par or better. Keep track of the number of rolls that it takes for you
to get a par or better. Repeat this process 10 times. Complete the Individual Empirical Results table.

Individual Empirical Results
Attempt 1 2 3 4 5 6 7 8 9 10
No. of rolls (7) to
get par or better

Wait until the entire class’ numbers of rolls until first success are tallied to continue.

9.

Use the outcomes from the class’ rolls to develop an empirical cumulative distribution for the outcomes.
Complete the third column in the Theoretical vs. Empirical Cumulative Distributions table with the
correct proportions.

10.

Compare the theoretical cumulative distribution (from Question 7) and the empirical cumulative
distribution (from Question 9). Is the geometric model proposed a reasonable model for the classes’ data?
Explain.

B.2 Extension 2 Worksheet -- How LO can you GO? Hypergeometric Distribution

When a GOLO die rolls off the designated field of play (for example, the table), it is out of bounds.
Suppose that all 9 dice are rolled and M of the dice roll out of bounds. Let X denote the number of colored
dice that roll out of bounds. This leads us to what is called the hypergeometric distribution. The setting for
a hypergeometric random variable is characterized by the following:

o a finite population of N items,

o of which M have a certain characteristic,

o and a sample of size n is drawn without replacement (i.e., the same item can not be resampled).
In this setting the number of items x in the sample that have the characteristic is said to have a
hypergeometric distribution.

The probability of x items having a characteristic in a sample of size n drawn from a population of size N
MII[N-M

X X

N
M
Questions:

Consider a roll in the game of GOLO of all 9 dice of which 4 are colored dice (the par 3s and par 5s).
Suppose that 3 of the dice roll out of bounds.

that has M items with the characteristic can be found as: Pr[}{ = I:l = where max (0, n -

N=M)<x<min(n,M).

1. What are the values of N, M, and » for this situation?

2. In the probability statement Pr ( X = x ) above we wrote "where max (0, n- N+ M) <x <min ( n, M
)." Explain why x >max (0,n- N+ M).
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3. In the probability statement Pr ( X = x) above we wrote "where max (0, n- N+ M) <x <min ( n, M
)." Explain why x <min ( n, M).

4. What is the probability that none of the colored dice are out of bounds?
5. What is the probability that at most 1 of the colored dice are out of bounds?
6. What is the probability that at least 1 of the colored dice are out of bounds?

7.
Find the theoretical cumulative distribution for the number of colored dice that are rolled out of bounds.
Complete the Theoretical Cumulative Distribution table with the correct probabilities.

Theoretical Cumulative Distribution
Number of Theoretical
colored dice Cumulative Distribution
out of bounds (x) PR(X<x)
0

1
2
3

B.3 Extension 3 Worksheet -- How LO can you GO? Negative Binomial Distribution

One of the blue GOLO dice, Par 5A, has the potential of rolling an eagle. Suppose that this blue die is

successively rolled until R eagles are rolled. Let Z denote the number of times this die is rolled until the

R" eagle is rolled. Then, Z follows a negative binomial distribution.

The setting for a negative binomial random variable is characterized by the following:

o z independent observations (usually called trials) where z is not known beforehand,
o each observation is categorized as either a success or a failure, and
o the probability of a success, denoted by p, is the same for each observation.

In this setting the number of trials Z until the R™ success is called a negative binomial random variable
and is said to have a negative binomial distribution. The probability that it takes z rolls until the R"

z-1 B =—R
success can be found as: Pr{Z =z) = 2_1]7 (1-p) ~.wherez=R,R+1,R+2...;0<p<1.
Questions: Suppose that you are trying to roll the blue GOLO die, Par 5A, until you get two eagles.

1.
Comment on the characteristics of the negative binomial setting to explain why the number of rolls until
two eagles are obtained can be considered a negative binomial random variable.

2. What is the value of the probability of success p on any trial?

3. What is the probability that two successive rolls result in two eagles?
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4. What is the probability that the die must be rolled at least three times in order to get two eagles?
5. What is the probability that the second eagle occurs on the tenth roll?

6.
Find the theoretical cumulative distribution for the number of rolls required to obtain two eagles.
Complete the Theoretical Cumulative Distribution table with the correct probabilities.

Theoretical Cumulative Distribution

No. of trials needed to Theoretical
obtain 2 successes (x) Cumulative Distribution
Pr(X<x)
2
3
4
5
6
7
118
119
120

B.4 Extension 4 Worksheet -- How LO can you GO? First Order Statistics

To begin the GOLO game all 9 dice are rolled, and a player selects the die (or dice) with the minimum
score relative to par. Let I denote the set of labels for the 9 dice such that /= {3A, 3B, 4A, 4B, 4C, 4D,
4E, 5A and 5B}. Two of the dice (3A and 5A) have the potential of rolling an eagle. The best outcome for
the remainder of the dice is birdie. Let X34, X3B, X4A, ..., X4E, X5A, X5B be the 9 independent variates

where X3A and X5 have cumulative distribution function Fg(x) and X3B, X4A, ..., X4E and X5B have
cumulative distribution function Fp(x).

Questions:

1. Develop an expression for FE(x), the cumulative distribution function for the die with the potential of
rolling an eagle.

2. Develop an expression for Fp(x), the cumulative distribution function for the die whose best outcome is
a birdie.

3. Develop an expression (denoted by F(1)(x)) for the cumulative distribution function of the first order
statistic as a function of both Fg(x) and Fp(x).

4. Use EXCEL to compute the values for F(1)(x) whenx=-2, -1, ..., 5. Note: Place the values of x =~
2,—1, ..., 5in the first column, and place the values of F(1)(x) in the second column.

5.
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Use EXCEL to compute the values for the probability distribution of the first order statistic (denoted by
p(1)(x)). Place the values of p(1)(x) in the third column.

6. Use EXCEL to compute the expected value of the first order statistic. Place the computed values of x *
p(1)(x) in the fourth column and sum these computed values for the expected value.

7.

In order to examine the expected value empirically, roll the 9 GOLO dice 100 times and keep track of the
minimum score relative to par on each roll. In an effort to demonstrate the Law of Large Numbers,
compute the running average after each roll and then use a statistical software package to make a line
graph of these running averages after each roll.

8

Compare the final simulated running average obtained in Question 7 with the computed (theoretical)
result obtained in Question 6.
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