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Abstract

Hypothesis testing is one of the more difficult concepts for students to master in a basic, undergraduate statistics
course. Students often are puzzled as to why statisticians simply don’t calculate the probability that a hypothesis is
true. This article presents an exercise that forces students to lay out on their own a procedure for testing a hypothesis.
The result is that the students develop a better understanding for the rationale and process of hypothesis testing. As a
consequence, they improve their ability to grasp the meaning of a p-value and to interpret the results of a significance
test.

1. Introduction

We present an exercise designed to engage students in the process of conducting an hypothesis test. While we
developed the exercise to demonstrate the general process of hypothesis testing, it also could be used as an illustration
of a chi-square goodness of fit test and a reinforcement of the logic of hypothesis testing. Since our experience has
been with using the exercise for introducing hypothesis testing, this will be our focus, but we believe that it could be
used equally effectively for introducing chi-square testing.

The relevance of hypothesis testing has been questioned over the past few years. In 1994, Jacob Cohen encouraged
psychologists to drop significance testing altogether and rely completely on confidence intervals. Since that time,
scholars have argued back and forth over the relevance of hypothesis testing. (See, for example, Batanero 1997; Dahl
1999). Regardless of one’s opinion of the place hypothesis testing should have in an undergraduate statistics course, it
is almost impossible to find a basic textbook that does not devote considerable coverage to the topic and it is
commonly taught in basic statistics courses. It is the aim of this article to present an effective approach for
communicating the logic of hypothesis testing.

Hypothesis testing often is a difficult topic for students to master. As Bart Holland (2007) states, "Many students
encountering classical hypothesis testing for the first time consider it an abstract procedure that is initially hard to
grasp, and possibly even counterintuitive.” One of the issues that many students struggle with is the ‘reverse logic’
employed in testing. Most of us would be far more satisfied if we could state the probability that the null hypothesis
(or the alternative hypothesis) is true or false. Instead, of course, we have the abstract concept of the p-value that tells
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us the probability of obtaining a sample result at least as extreme as that which we find in a particular case if the null
hypothesis is true.

We have found that student understanding of hypothesis testing can be improved through the use of a problem-based
learning (PBL) exercise. There is a substantial body of literature indicating that PBL has important advantages over
more traditional pedagogies in producing sustainable learning outcomes. While PBL originated in the medical field,
many disciplines have adopted this approach in an attempt to produce deeper understanding and better retention of
important principles. The claimed benefits of PBL relative to more traditional forms of instruction include: 1) higher
levels of skill development and comprehension (see, for example, Albanese and Mitchell 1993; Rhem 1998); 2) greater
engagement and satisfaction among students (see, for example, de Vries, Schmidt, and deGraaf 1989; Albanese and
Mitchell 1993); and 3) a more effective transference of knowledge and skills from the classroom to the "real” world.

(Gallagher, Stepien, and Rosenthal, 1992)

A number of authors have suggested exercises to illustrate hypothesis testing. (See, for example, Bates 1991 and
Eckert 1994.) While these exercises may be effective demonstrations of hypothesis testing, they do not really challenge
students to work out the logic of hypothesis testing on their own and as a result they do not capitalize on the
possibilities offered by true PBL. The exercises are not presented as problems and the students are not encouraged to
develop solutions on their own.

One of the keys to effective PBL is using a "good"” problem. Lohman (2002) contends that a good PBL problem should
have three "structural features”. One, the exact nature of the problem should be unclear and the information needed to
solve the problem should be incomplete. Two, there should be more than one way to solve the problem. And three, the
problem should not have a single right answer. We have constructed an exercise that satisfies these criteria and that
effectively engages the students in the learning process.

2. The Problem and Exercise

What follows is a detailed description of the problem that is presented to the students, the questions that are asked of
the students, and, finally, the lessons that the students are encouraged to take away from the exercise. The elements of
the exercise presented in boxes are the items that actually are presented to the students. The sentences not in boxes are
comments or directions to the instructor for working through the exercise. This exercise has been used successfully in
introductory statistics courses for undergraduate students as well as for MBA students. It is presented after sampling
distributions and confidence intervals have been covered. It is used to introduce the concepts of hypothesis testing, so
it is the students’ very first exposure to the topic. The entire exercise generally takes approximately one hour.

2.1 The Problem

The problem that we use to illustrate the hypothesis testing process involves a goodness of fit test because, in our
experience, students find this type of problem to be the most intuitively accessible.

Stella Stat has been running a small-time gambling operation on her campus for several months. Stella
sells each of the numbers 1 through 5 for $1.00 (collecting a total of $5.00) for each spin of a wheel. Then
she spins the Wheel of Destiny. The person who holds the number where the spinner comes to rest gets
$4.75. (Stella keeps 25¢ per spin for running the game and supplying the beer and pretzels.)

Stella just purchased a new spinner, the critical piece of equipment for the game. Before she begins using
this spinner, she wants to make certain that it is, in fact, fair — that is, she doesn’t want some numbers to
come up too often and others, not often enough. (Given the nature of the game, Stella has no incentive to
cheat and she wants the game to be as fair as possible.)

Stella comes to you, her statistical guru, and asks you to verify that the new spinner is fit to use. Describe
a procedure for deciding whether the spinner is fair.
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Spinner site: http://nlvm.usu.edu/en/nav/frames_asid_186 _g_1 t 1.html?open=activities

Change Spinner Spim Kecord Resulls

Figure 1. The Wheel of Destiny: Is It Fair?

At this point we divide the class into groups of three to five students, have the students log in to the spinner site, and
give the groups a short time to reflect on how they will tackle the problem. It does not take the students long to decide
that they should spin the spinner to see if the outcomes look fair. (Note: If the students do not have access to
computers, this exercise can be run with a real, homemade spinner or simply with the picture of a spinner.)

We intervene here and ask the students to spin the device 50 times and to record the results. (If we use only the
picture, we present them with the results of 50 spins like those shown below.)

Fiftv spins vield the followmg:

Number of

Number observations
1 10
2 12
3 6
4 7
5 15
Total 30

All right, now vou have the data. Is the spinner fair, ar not?

Given the available data, determine what vou should do to make a judgment as to whether the new spinner is

Jfair.

Fioure 2. The results of 30 gpins of the wheel

Either on their own or with a little prompting, the students will deduce that if the spinner is fair, all numbers are
equally likely to occur. They realize that, given a total of 50 spins, each number should come up about 10 times, but
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they also recognize that sampling error is sure to be present so they cannot reasonably expect identical frequencies of
the numbers 1-5.

We intervene once again to provide the students with a measure of the departure of the sample results from “fair.’
Students are comfortable with the idea of looking at the difference between the observed and expected values. The idea
of squaring this difference and then dividing by the expected value is not so intuitively obvious, but most will relate
the squaring operation to what is done when calculating a standard deviation. As with the standard deviations, unless
we square the differences or use absolute values, positive differences will be exactly offset by negative differences.

Number of ‘Expected’ number  Difference between Dhfference Sq. difff exp.

Number observations of observations observed and expected sguared num of obs

1 10 10 0 0 00

2 12 10 2 4 40

3 6 10 -4 16 1.60

4 7 10 -3 9 a0

3 15 10 3 25 250
Toral 50 50 0 5.40

— 4

_.-"""—.‘—'-—F"._

This is o« measure of the magnitude of
2 . & U S, ; o ,
(observed count — expected count)” the discrepancy between what we

2 actually ebserve and what we could
X = Z expected count T SRS TR "
anticipate from a fair spinner.

Chi-square 15 calculated as follows:

a) Explamm in common sense terms the conditions under which the calculated ;a:: value would be large and
the conditions under which 1t would be small.

b} What is the range of possible values? Smallest? _ Largest?

c)  Is this calculated ;{3 value (3 40) large or small?

d) Is the spinner fair. or not?

Figure 3. A measure of the wheel's “fairness”

Most will see that this number alone has limited usefulness; they will recognize that they need some external standard
against which they can compare their results if they are to draw a conclusion as to whether the spinner is fair. To
maintain the intuitive appeal of the exercise, we now present the students with the results of a Monte Carlo simulation
of a fair spinner. We use the Minitab random number generator to produce 100 samples with each sample consisting of
50 spins. We explain to them that these results were generated using a uniform distribution where each number 1-5 has
an equal chance of occurring. We have good reason to believe that sampling from the Minitab random number

generator produces results that closely approximate a uniform distribution. We calculate the value of 22X2 for each
sample of 50 spins.
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Outcomes Sampl  Samp2 Sampd Sampd Sampd Sampd7 Samp98 Samp?9 Samp100
1 13 4 5 10 13 ... 15 11 5 10
2 9 5 11 11 11 11 g 14 12
3 7 11 12 9 10 7 " 13 10
4 g 20 12 g 11 11 12 8 8
5 13 10 10 12 5 B g 10 10
33 valie 3.2 16.2 3.4 1.0 3.6 5.2 1.4 5.4 0.8
Partial Sampling Distribution of Calculated Chi-sqg Values
204
15+
O 10
&
54
l:l 1 1 1 1 1 | 1 | 1 I_Il
2 4 & 8 10 12 14 16
Chi-sq values

This Monte Carlo simulation demonstrates that we can create a probability distribution of the %~ statistics that
we calculated from our randomly drawn samples for our fair spinner analog. We should note, however, that this
example produces just a parfial sampling distribution (based on only 100 samples). In 1873 Friedrich Helmert, a

German scientist, determined that the true, theoretically complete chi-square distribution for the conditions we
face would look like the graph shown below.

Figure 4. A Monte Carlo sumulation of chi-square values
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density
1.2

Chi Square Calculator

110 mn
chi-suare

degress affreadam = |4

Araa ticht of 3 3T = |IZI.E Compute!

These 3~ values were obtained using:
http:/wanw. stat tamu edu’~west/applets/

chisgdemo html

The chi-square distribution
The probabilities shown 1n the
table on the right correspond to the
shaded portion of the curve.

Figure 5. Chi-square values for selected percentiles

Area right of |4.045

il
E

Area right of [4.878

Ares right of {5.989

1
o
L

Area right of i?-TF"B

......................................

Area right of |9.488

Area tight of i’IH.EE

Selected percentiles. . . Hmn.e C:ul'lu I.]m‘ti.ﬂ} {:-'hi—i;qu:!re
sampling distribution distribution
30% of all ¥2 values are greater than 36 3357
40% of all ¥ 2 values are greater than 4.2 4.045
30% of all ¥2 values are greater than 4.8 4 878
20% of all ¥2 values are greater than 5.6 5989
10% of all ¥2 values are greater than §2 1.77
5% of all 42 values are greater than 10.4 9 488
1% of all 42 values are greater than 13.4 1328

30% of all ¥ values in the chi-square distribution are greater than 3.357)

(so, for example, 30% of all y" values in the Monte Carlo partial distribution are greater than 3.0 while

We ask vou to accept that if we were to run the Monte Carlo simulation an infinite number of times (rather than
only 100 as we did here), the ¥~ values for a "farr’ spinner would be equal to those shown by the chi-square
distribution. This should not be too hard to believe given the similanty of the numbers shown m the table.

Figure 6. Comparison of our partial sampling distribution to the chi-square distribution

Now that all the data are in, is the spinner fair, or not?

We show the students the probabilities that correspond to the sample statistic.
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Chi Square Calculator

density
D27

011 j/f\

What can we say?
Can we conclude that the spinner is unfair?
a2 10 oy Can we conclude that the spinner 1s fair?
What 15 the probability that the spinner 1s fair?
What 1s the probability that the spinner 1s unfair?

chi-square

degrees of freedom = {4 -

Area right of |5.4 = [0.2487 Compute! |

}Figure 7. Chi-square values for our sample results

In the ensuing discussion, we make the points shown below.
2.2 Lessons to be Learned from the Wheel of Destiny

Note the elements of the procedure that we intuitively follow:

« We assume that the spinner is fair (i.e., we assume that the null hypothesis is true).

« We collect sample data and make a calculation using the sample data (i.e., we calculate a number that captures
the magnitude of the difference between our sample results and what’s expected if the spinner is fair; we call
this number our sample statistic).

« We select some external standard against which we can compare the results of our calculation (i.e., we find a

distribution — in this case the ?2 distribution — that provides a measure of what constitutes ‘normal’ variation
between our observed results and what we would expect to see if the spinner is fair).

« We look at the value of our sample statistic to see how likely it would be to occur if the null hypothesis is true

(i.e., we see where the 5.4 falls on the ?2 distribution. In this case, .7513 of all ?2 values lie below 5.4 — or .2487

of all 2 values lie above 5.4 — if the spinner is fair. We call this .2487 the p-value. It represents the probability
of obtaining a sample statistic as high or higher than that found in our sample if the spinner is fair.)

We make an arbitrary judgment about the point at which the discrepancy between our sample statistic and the
external standard is too great for us to consider the difference to be a reflection of sampling error alone (i.e., we
choose some “a’ like 0.10 or 0.05).

We conclude that our null hypothesis is untrue (the spinner is unfair) if our p-value is smaller than our arbitrarily
chosen a. If our p-value is larger than our a, we have not proven that our null hypothesis is true, but we don’t
have compelling evidence that it is false.

Note where things stand when we have completed the procedure:
« We can’t say for certain whether the spinner is fair or unfair.

« We can’t calculate the probability that the spinner is fair.
« We can’t calculate the probability that the spinner is unfair.
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We can say either of two things (depending upon our sample results):

« our sample results are reasonably consistent with results that we would observe if the spinner is fair (i.e., the null
hypothesis does not appear to be unreasonable), or

« our sample results are not consistent with the results we should observe if the spinner is fair (i.e., the null
hypothesis appears to be unreasonable).

3. Additional Exercises Using the Spinner

Change §pinner 1 Bpin | Record Resulis |

It is possible to expand upon this exercise. For example, the spinner can be altered so that regions differ in size (as

shown here). Using this spinner will, of course, generate a very different set of outcomes and can be used to show that
the resulting 22 values will be much larger. If students develop a sense for the meaning of the chi-square statistic, they
should grasp with little difficulty that this ‘weighted” spinner inevitably will produce a large chi-square value and that

the probability of seeing such a big value is remote if the spinner really is fair —that is, they should accept the notion
that the resulting p-value will be quite small.

4. Conclusion

Our experience with the exercise described above suggests that students grasp the reason why we test hypotheses as
we do and consequently have an easier time interpreting the results of hypothesis testing if they develop the process of
conducting a hypothesis test on their own rather than being told how tests are performed. When students begin to show
signs of confusion as we present other types of hypothesis tests, we have found it helpful to refer them to the Wheel of
Destiny example and to think about how and why we acted as we did.
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