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Abstract

While split-plot designs have received considerable attention in the literature over the past decade, there seems to be a general lack of intuitive
understanding of the error structure of these designs and the resulting statistical analysis. Typically, students learn the proper error terms for
testing factors of a split-plot design via expected mean sgquares. This does not provide any true insight as far aswhy a particular error termis
appropriate for a given factor effect. We provide away to intuitively understand the error structure and resulting statistical analysisin split-plot
designs through building on concepts found in simple designs, such as completely randomized and randomized complete block designs, and then
provide away for studentsto "see" the error structure graphically. The discussion is couched around an example from paper manufacturing.

1. Introduction

Many industrial and agricultural experiments involve two types of factors, some with levels hard or costly to change and others with levels that
arerelatively easy to change. Examples of hard-to-change factors include mechanical set-ups, environmental factors, and many others. When
hard-to-change factors exist, it isin the practitioner’ s best interest to minimize the number of times the levels of these factors are changed. A
common strategy is to run al combinations of the easy-to-change factors for a given setting of the hard-to-change factors. This restricted
randomization of the experimental run order resultsin a split-plot design (SPD).

Although great technical strides have been made in terms of the design and analysis of SPDs, there seemsto be ageneral lack of intuitive
understanding of the error terms and the resulting statistical analysis. Typically, students learn the proper error terms for testing factors of a split-
plot design via expected mean squares. While this context is certainly important, we have found in our own consulting and teaching experience
that the expected mean sgquare framework does not provide any true insight as far aswhy a particular error term is appropriate for a given factor
effect. In this manuscript, we hope to improve the fundamental understanding of SPDs by taking a first-principles approach to describing the
error structure through building on concepts already familiar to studentsin simple designs and provide away for students to "see" the SPD error
structure graphically. The examples provided here are all of the industrial variety and while they may be more interesting to those who teach and
consult with engineers, the discussion is valid within any context of a split-plot design.

Since SPDs are essentially two or more error control experimental designs superimposed on top of one another, we follow the notation of
Hinkelmann and Kempthorne (1994) by denoting a given split-plot design as SPD(D,,,D¢) where D, and D refer to the designs in the whole-

plot and sub-plot factors, respectively. An extensive, but not exhaustive list of references on the design and analysis of SPDs includes Letsinger,
Myers, and Lentner (1996); Christensen (1996); Huang, Chen and Voel kel (1998); Rao (1998); Bingham and Sitter (2001); Webb, L ucas and
Borkowski (2004); Federer and King (2007); Smith and Johnson (2007); and Kowalski, Parker and Vining (2007).
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Two common SPDs are designs in which the whole-plot factor levels are assigned via a completely randomized design (CRD) and the sub-plot
factors are assigned via a randomized complete block design (RCBD) [i.e. SPD(CRD,RCBD)] and designs in which bath the whole-plot factor
levels and sub-plot factor levels are randomly assigned within aRCBD [i.e. SPD(RCBD, RCBD)]. We begin in Section 2 with areview of the
CRD and then move along to the RCBD in Section 3. In Section 4 we extend our discussion to split-plot designs. Throughout we show how the
error structure dictated by the experimental design can be explored through graphical methods. A common example from paper manufacturing
will be discussed in all settingsin order to unify the presentation.

2. Completely Randomized Designs CRD's

The most commonly assigned design structure for experimentsisthe CRD. The CRD assumes the availability of a set of homogenous
experimental units (EUs). Experimental units are the physical entities to which afactor level combination is applied. The experimenta unit,
upon exposure to a factor level combination is considered areplicate of the treatment combination. Replication or replicated design refersto the
occurrence of two or more replicates for a given treatment combination. To illustrate terminology, we refer to amaodified version of the tensile
strength example from Montgomery (2001). In this example, a paper manufacturer is interested in determining the effect of three different
preparation (henceforth referred to as prep) methods (Z) on the tensile strength of paper. For ssimplicity, we will refer to the levelsof Z as 1, 2,
and 3. We will assume that there are enough resources to produce nine batches of pulp (three batches for each level of Z). Since the levels of Z
are randomly assigned to the batches, the batches are the experimental units. Consider the replicated 3-level design provided in Table 1. The
notion of a CRD is that the order in which the prep methods are utilized to produce batches of material is randomized.

Table 1. A replicated 3-level design for paper manufacturing example

Replicate
1 1 2 1 3 2 2 3 3
Prep
Method 2 3 2 1 2 1 3 3 1
Tensle 38.75 31 37.25 345 395 35.25 375 3325  37.25
Strength
A possible model for the 3-level CRD is
Yij= M +ti+ g i=123j=123, (1)

wherey;; istheijth observation, p isthe overall mean, T istheith treatment effect and aij is the experimental error component. Experimental

error describes the variation among identically and independently treated experimental units. For the CRD, it istypically assumed that that the sij

are

i.i.d. N(O, 02). The experimental error variance, 62, describes the variance of observations on experimental units, for which the differences
among the observations can only be attributed to experimental error. The magnitude of 62 is afunction of avariety of sources, including 1.
natural variation among EUs; 2. observation/measurement error; 3. inability to reproduce the treatment combinations exactly from one replicate
to another; 4. interaction of treatments and replicates; and 5. other unaccounted for sources of variation.

In the CRD, the experimental error variance will be determined by the differences associated with the replicates nested within treatment.
Specifically, one would look at the three prep method i replicates (yj1, Yi2, ¥;3) and see how their tensile strength values differ from their group

mean {}_f,] . These estimated differences are then pooled together to get one estimate of the experimental error variance,

ii(%“ﬁi-)z

5_2 — i-l j-l (2)
df error

The error degrees of freedom (df error in (2) above) for the CRD arise from the fact that there are generally n replicates for each treatment level
and one degree of freedom is used for estimation of the treatment mean. Thus, for each of thet treatment levels there are n-1 degrees of freedom
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and pooling we have
£*(n—1) ©)

error degrees of freedom. For the CRD in Table 1 with three replicates and three treatment levels we have 3* (3-1) = 6 df for the experimental
error.

Figure 1a provides a graphical representation of the experimental error upon noting the dispersion among the three prep method replicates, y;4,
Yio, Yi3, Within the ith prep method, averaged across the prep methods. One can gain intuition regarding the treatment effect by visualizing the

dispersion among the Y. (between groups variance) to the average dispersion among the replicates within each of the prep methods. Technically

speaking, one compares the dispersion among the ¥i., multiplied by the square root of the number of replicates within each treatment (and
represented by the square root of the mean sum of squares for treatments), with the dispersion among the replicates within each prep (and
represented by the square root of the mean sum of squares for error). In this example it is apparent that the between groups variance is only
dlightly greater than the experimenta error variance and thisis further verified by the non-significant prep method p-value (0.1038) found in
Table 2.

Figure 1. Experimental error representation CRD (a). Experimental error representation for SPD[CRD,RCBD] (b).
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Table 2. Analysis of Variance for the CRD in Table 1.
Source DF SS MS F Prob>F
Prep Method 2 32.097 16.048 3.384 0.1038
Error 6 28.458 4.743
C.Total 8 60.555

3. Randomized Complete Block Designs (RCBDs)

Suppose for the paper manufacturing example, only three batches can be produced in a given day and environmental conditions from day to day
are thought to influence tensile strength. Instead of treating the design as a CRD, it is probably more efficient (lower experimental error
variance) to utilize a RCBD where the day is the block. Table 3 provides the set-up of a RCBD for the modified paper manufacturing example.
Note that randomization of treatment levels occurs independently within each day.

Table 3. RCBD for the 3-level Paper Manufacturing Example

Day
1 2 3
Prep
Method 1 3 2 2 3 1 1 2 3
Tensile Strength|  34.5 31 38.75 37.25 33.25 35.25 37.25 39.5 375
An appropriate model for the RCBD in Table 3is
yij =y + ti + bj + qJ’ i= 1,2,3,] =1,2,3, (4)

wherey;;, u , t; areas defined in (1), Bj denotes the jth random day effect, and sij denotes the experimental error. Note for the RCBD that every

prep method occursin every day and replication of treatments occurs across days. If the day effect isignored in the analysis then the
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experimental error would include Bj + sij. By including the day effect in the analysis, the day effect isin essence extracted from the experimental

error.

The day by treatment interaction and the experimental error are confounded in the RCBD. Theintuition behind this statement can be seen
through our example where we note that during a single day, the three prep methods are randomized and the resulting tensile strengths are
recorded. With just asingle day, no replication exists and there would not be any way to test for the prep method effect since the experimental
error is confounded with any observed difference in prep methods. However, when three days worth of experiments are performed in this
manner, there will be replicates of the 3-level experiment, one replicate for each day. In order to make sure we account for the fact that different
days may result in different tensile strength results, the correct experimental error term would be one that gets at the change in the observed
differences between the 3-level prep variable from day to day. But thisis exactly the definition of an interaction between prep method and days.
Consequently, the day by prep method interaction and the experimental error are confounded. For this reason one must assume that any
differencesin prep method across the daysis not the result of an actua interaction effect but instead the result of experimental error. Thus, the
degrees of freedom for the expected error term for the RCBD are degrees of freedom for the day by prep method interaction [(3-1) x (3-1)]. In
general, the degrees of freedom are

[(b-D) x(t-1)] )
where b is the number of blocks and t is the number of treatments.

Figure 2a provides a graphical representation of the experimental error for the RCBD in Table 3 under the assumption of no prep by day
interaction. The comparison of prep method 2 to prep method 1 is denoted by A, for day 1, A, inday 2, and Az inday 3. A different set of deltas

would exist upon comparing prep methods 1 vs. 3 and 2 vs. 3. The experimental error is obtained as follows. Look at the variation in the deltas
for comparing prep methods 2 and 1. Also look at the variation in the deltas for comparing prep methods 3 and 1, and the variation in the deltas
for comparing prep methods 3 and 2. These three sets of variations in the deltas are pooled for an estimate of the experimental error variance.
Notice that the variation in the deltas corresponds to alack of parallelism in the linesin Figure 2a. No variation corresponds to parallel lines and
thus, negligible experimental error. Large variation resultsin lines that are not parallel and thus larger experimenteral error. In atwo-factor
analysis of variance, alack of parallelismis an indication of the existence of an interaction between the factors. In the RCBD, experimental error
and block by treatment interactions are confounded. Thus, variation in the deltas (used to estimate experimental error) and lack of parallelism (an
indication of an interaction) provide the same information about experimental error, assuming no interactions actually exist. The experimental
error is quantified by the square root of the mean squared error.

Figure 2a also provides the overall means for each of the prep methods and one can get a general idea of the treatment effect by the magnitude of
the differences in the treatment means relative to the experimental error (deviation from parallel lines). In generdl, if the profiles are relatively
parallel and widely separated then there is a significant treatment effect. The lack of parallelism is quantified by the mean squared error in Table
4 (2.267) while the separation among the prep methods is quantified by the mean square for prep method (16.048) in Table 4. Similar to what
was observed in the CRD, when making the actual assessment of atreatment effect, the variation in the overall means for each prep method must
beinflated by afactor of the square root of the number of replicates (here replicates are blocks) and is represented by the mean sum of squares
for treatments. Here, the dispersion among the prep method means is substantialy larger than the experimental error variance, thus suggesting a
significant prep method effect, afact evidenced by the small p-value (0.0485) for prep method in Table 4. Note the reduction in the error sum of

sguares from the CRD (SSE = 28.458 in Table 2) to the RCBD (SSE = 9.069 in Table 4). In summary, the experimental errorinaCRD is

represented by (the average of) the dispersions among the replicates within each treatment and the experimental error in aRCBD by the
variation in treatment differences from block to block.

Table 4. Analysis of Variance Table for RCBD Analysis of Datain Table 3.

Source DF SS MS F Prob>F
Prep Method 2 32.097 16.048 7.078 0.0485
Day 2 19.389 9.694
Error 4 9.069 2.267
C.Totd 8 60.555
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Figure 2. Experimental error representation for RCBD (a). Whole-plot experimental error and whole-plot treatment effect

representation for SPD[RCBD,RCBD] (b).
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Figure 2b:
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In the next section we demonstrate how the intuition of the experimental error in the CRD and RCBD can be extended to the split-plot design
setting.

4. Split Plot Designs

Suppose thereisinterest in investigating the effect of a second factor, cooking temperature on tensile strength. In this experiment, once abatch is
constructed with a particular prep method, the batch is split into sub-units for cooking. Here, the batches are the whole-plot units with prep
method as the whole-plot factor and the sub-units are cooking portions with cooking temperature (henceforth referred to as temp) as the sub-plot
factor. Prep method can be considered as the hard to change factor whereas temp is an easy to change factor sinceitslevels are easily
randomized once the batch is constructed with a given prep method. For the SPD there are two separate randomizations and thus two separate
experimental errors, one for the whole-plot factor levels and another for the sub-plot factor levels. In this section, we will discuss a scenarioin
which the whole-plot factor levels are fully randomized and a second scenario in which the whole-plot factor levels are randomized within a
block, resulting in a RCBD for the whole-plot factor. Note that the sub-plot randomization is always restricted in the sense that randomization
takes place separately within each whole-plot, making each whole-plot a block for the sub-plot factor levels.

4.1 SPD's With Completely Randomized Whole-plot Levels, SPD[CRD,RCBD]

Let’s assume that all nine batches of pulp can be made on the same day and that no blocking is necessary. In this case, the three prep methods
would be randomized to the nine batches, much like a single variable experiment at three levels would be randomized with three replicates, i.e.,
aCRD. Table 5 presents a possible randomization structure at the whole-plot level.
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Table 5: Randomization of the Whole-Plot Factor Prep Method Replicated Three Times.

Replication
1 1 2 1 3 2 3 2 3
Prep Method 2 1 1 3 1 2 2 3 3

Next, for agiven prep method, the four levels of temp are randomly applied to the batch sub-units (the sub-plot units). The second level of
randomization and order in which the experimental runs would be performed is provided in Table 6.

Table 6: Randomization of the SPD[CRD,RCBD] in Prep Method and Temp

Replication
1 1 2 1 3 2 3 2 3
Prep Method 2 1 1 3 1 2 2 3 3

275 200 275 200 275 275 200 200 225
250 225 250 225 250 200 250 250 250
Temp
225 275 225 250 200 225 225 275 200

200 250 200 275 225 250 275 225 275

In this situation the whole-plot factor, prep method, at three levels with three replicates is randomized and then the sub-plot factor, temp, is
randomized at the sub-plot level. Since the levels of prep method are randomly assigned at the batch level, the batch effect must be assessed by
comparison to a batch experimental error term which reflects the natural spread across batches. Similarly, since the levels of temp are randomly
assigned at the sub-unit level, the temp effect must be assessed by comparison to a sub-unit experimental error term reflecting natural dispersion
across sub-units. Contrast this to a CRD setting involving prep method and temp in which one would need 12 batches (one for each combination
of prep method and temp) for a single replicate and 36 batches for three replicates. A CRD would only have one experimental error term which
would reflect batch dispersion. The SPD offers cost efficiency for the hard to change factor prep method as three replicates of the SPD would
only require nine changes of prep method versus the 36 required for the CRD.

An appropriate model for the SPD[CRD,RCBD] described above is

Yijk =M + T+ 6j(i) +y t (Y + aijk, i=123;]=123,k=1,234, 6)

wherey; ik is the response on the jth day for prep method i at temp k. The parameter i is the overall mean, T isthe fixed effect dueto theith
whole-plot treatment (prep method), yJ 0 isthe whole-plot error, Yy isthe fixed effect due to the kth sub-plot treatment (temp), (Ty)ik isthe whole-

plot by sub-plot interaction and eijk isthe sub-plot error. It istypically assumed that the 5j arei.i.d. N(0,0%5) with 025 denoting the

0]

experimental error variance of the whole-plot units. The sij are assumed i.i.d. N(0,0%) with 62, denoting the experimental error variance of the

k

sub-plot units. Finally, it is assumed that the 6j and eijk are independent of one another.

0]

In providing intuition for the two experimental error components of the SPD[CRD,RCBD], we first begin with CRD at the whole-plot level. For
the whole-plot experiment, we replicated the 3-level prep methods three times and completely randomized the run order. In other words, we took
the 9 runs of the prep method (1,1,1,2,2,2,3,3,3) and fully randomized them. Recall from our discussion in Section 2, the experimental error
variance for a CRD is determined by the differences associated with the replicates nested within each prep method. For the SPD, the contribution

of theith whole-plot level for the jth replicate is summarized by taking the mean response across the sub-plot levels, Y5, 1n our example, Y is
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4
S A ]

the average response on the jth day for the ith prep method averaged across the observed cooking temps ( (]

Since the whole-plot design is a CRD, the whole plot experimental error variance will be determined by the differences associated with the
whole plot replicates nested within the whole plot treatment. Specifically, one would look at the three prep method i replicates

(Fir-Pi22¥5.) and see how these average tensile strength values differ from their group mean &%) . These estimated squared differences are
then pooled together to get one estimate of the whole plot experimental error variance,

- 250 ) ™
: df error

where 5'3 denotes the estimate of whole-plot error variance. Note the direct parallel between the expression in (7) with that given in (2).

The degrees of freedom associated with the whole-plot error are calculated just as they were in (3) from Section 2. Due to the presence of both
whole-plots and sub-plots now, we will modify the notation and use

ty(ny = 1) (8)

to denote the degrees of freedom error. Here, t,,, denotes the number of whole-plot treatment combinations and n,, denotes the number of whole-
plot replicates nested within each whole-plot treatment combination.

The whole plot experimental error variance is easily visualized in Figure 1b by noting the dispersion among the three prep method replicates,
¥y 2 ¥iq, ¥ o Within the ith prep method. Figure 1b is equivalent to Figure 1a but with the y;j (from Figure 1a) = Vi (from Figure 1b).

Therefore, the interpretation of the whole-plot treatment effects is analogous to the discussion of the treatment effect of the CRD in Section 2.
More specifically, one can get a general idea of the whole-plot treatment effects by comparing the dispersion in the treatment means (here, the

dispersion among #1.- V.- a11'51.3"'3..) with respect to the whole plot experimental error variance. Note that the F-statistic for prep method in
Table 7 isidentical to that in the CRD analysis found in Table 2. The equivalent results are due to the fact that when the data are balanced,
taking the mean across the levels of the sub-plot factor within awhole-plot and then performing a CRD analysis of the means is analogous to the
split-plot analysis for the whole-plot factor. Note also that the whole-plot treatment and whole-plot error sums of squares are four times that of
the CRD, due to the four sub-plots within each whole-plot, therefore the F-ratio for the whole-plot treatment is unaffected.

Table 7: Analysis of variance for SPD[CRD,RCBD]

Source DF SS MS F Prob>F
Prep Method 2 128.39 64.19 3.38 0.1038
Reps (Prep Method) 6 113.83 18.97
Whole-plot Error
Temp 3 434.08 144.69 36.43 < 0.0001
Prep Method x Temp 6 75.17 12.53 3.15 0.0271
Sub-plot Error 18 71.50 3.97

4.2 Whole-plot Experimental Error Variance for the SPD[RCBD,RCBD]

When there is a blocking factor, the whole-plot factor levels are randomized within the blocks. Consider again the scenario from Section 3 where
it is only possible to make three batches of pulp in agiven day and environmental conditions from day to day are thought to influence tensile
strength. Here, we have two blocking factors: one at the whole-plot level (prep methods randomly assigned within a day) and the other at the sub-
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plot level (sub-plot levels randomly assigned within awhole-plot level). Asin Section 4.1, the sub-plot factor is temp and the randomization of
the levels of temp takes place within each whole-plot, making the whole-plots blocks for the sub-plot factor. The randomization and run order
for both the whole-plots and sub-plotsis provided in Table 8. Contrast the randomization for the SPD to a RCBD with two factors. In the RCBD,
each day would require 12 batches, one for each of the 12 combinations of prep method and temp. A single randomization would take place,
namely the order in which the 12 batches are run within a day. This design would not be feasible here since it was stated that only three batches
can be run on agiven day. The SPD overcomes the necessity for so many batches to be run in a given day by incorporating two levels of
randomization.

First the order of the three prep methods (whole-plot levels) would be randomized for a given day, and then, separately, the levels of temp (sub-

plot levels) are randomized to the cooking portions within each batch. Thus, for a given day the SPD would require only three batches of
material to be produced.

Table 8: Randomization of the SPD[RCBD,RCBD] in Prep Method and Temp

Day 1 Day 2 Day 3
Prep Method 2 3 1 1 3 2 3 1 2
275 200 275 200 275 275 200 200 225

(42) (29) (36) (28) (40) (40) (32) (31) (40)

250 225 250 225 250 200 250 250 250
Temp (38 (26 (37 (32 (32 (31) (39) (41) (39)
225 275 225 250 200 225 225 275 200
RN CONN €O (40) (31) (36) (34) (40) (35)

200 250 200 275 225 250 275 225 275
(34) (33) (30) (41) (30) (42) (45) 37 (44)

An appropriate model for the SPD described aboveis

Yik=H + i+ b+di+ g+ (9, + &k 1=123j=123k=1234, ©)

wherep , T Bj, \2 and (ry)ik are as defined in (4) and (6), 6”. denotes the whole-plot error, and sijk is the sub-plot error. The same distributional

assumptions made with the SPD[CRD,RCBD] for the error terms are made here. Similar to the discussion in Section 4.1, in considering the

4
_ Y.
A

design at the whole-plot level, it is helpful to view the responses asthe *#. 's, where k-l is the average strength of the four cooking
portions for prep method i on day j. Since the whole-plot treatments (prep methods) are randomized according to a RCBD, the block (day) by
treatment interaction and the whole-plot experimental error are confounded (see the discussion in Section 3). For this reason one must assume
that any differences in prep method across the days are not the result of an actual interaction effect but instead the result of whole plot
experimental error. Thus, the degrees of freedom for the whole plot error term are the degrees of freedom for the day by prep method interaction
[(3-1) x (3-1)]. In general, the whole-plot error df are given by

(ty = D*(ny - 1) (10)

wheret,, is the number of whole-plot levels and n,, is the number of whole-plot blocks. Note that the degrees of freedom for the denominator of
the prep method F-statistic in the SPD[RCBD,RCBD] has four degrees of freedom instead of six in the SPD[CRD, RCBD] case.

Figure 2b provides a graphical representation of the experimental error for the whole-plot factor and isidentical to Figure 2a but with Yy = ..

Here the magnitude of the whole-plot experimental error variance is reflected in the degree of differences among the deltas (lack of parallelism
in Figure 2b) for al possible treatment comparisons. The whole-plot experimental error variance is estimated by averaging the variation in the
deltas when comparing prep methods 2 and 1, the variation in the deltas when comparing prep methods 3 and 1, and the variation in the deltas
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when comparing prep methods 3 and 2. Figure 2b also provides the overall mean for each of the prep methods and one can get a general idea of
the whole-plot treatment effects by the magnitude of the differences in the means with respect to the experimental error (i.e. , deviation from
paralld lines). Aswith the RCBD, when making the actual assessment of a treatment effect, the variation in the overall means for each prep
method must be inflated by a factor of the square root of the number of replicates (here replicates are blocks) and is represented by the mean sum
of squares for prep method (128.39) in Table 9. If the profiles in the block by whole-plot treatment interaction plot, (Figure 2b for our example),
arerelatively parallel and widely separated then there is a significant whole-plot effect. Thus, the visualization of a significant whole plot effect
viaFigure 2b isidentical to the visualization of atreatment effect in the RCBD using Figure 2a. Thisisfurther evidenced by the fact that the p-
value for prep method in Table 9 is precisaly the same as that given in Table 4. Unlike the standard RCBD where only one type of experimental
unit exists, the presence of whole-plot and sub-plot unitsin the SPD implies that one needs to be careful in the interpretation of the whole-plot
effect in the case of a possible interaction between the whole-plot and sub-plot effects. More will be discussed regarding whole plot treatment
interactions with subplot interactions in Section 4.3.

Table 9: Analysis of variance for the SPD[RCBD,RCBD] case

Source DF SS MS F Prob>F
Day 2 77.56 38.78
Prep Method 2 128.39 64.19 7.08 0.0485
Day x Prep Method 4 36.28 9.07
Whole-plot Error
Temp 3 434.08 144.69 36.43 < 0.0001
Prep Method x Temp 6 75.17 12.53 3.15 0.0271
Sub-plot Error 18 71.50 3.97

4.3 Sub-plot Experimental Error Variance

Asmentioned earlier, although there are different randomization schemes possible for the whole-plot factor levels, any randomization scheme
for the sub-plot factors will be restricted since sub-plot factor levels are aways randomized within whole-plots. To conceptualize the sub-plot
experimental design, it is helpful to focus upon asingle level of the whole-plot factor. In our example, imagine formulating three batches (i.e.
three whole-plot replicates) of pulp using a single prep method and then splitting each of these batches into four equal cooking portions (i.e. 12
total cooking portions). For each batch separately, the levels of temp are randomly assigned to the four cooking portions. Table 10 presents an
example of this randomization structure. Note that the sub-plot design is simply an RCBD where the blocks are the replicates of the specific
whole-plot level (prep method). Thus, to understand the sub-plot error term, all one needs to do isto identify the variable(s) in the data set which
uniquely define(s) the whole-plot replicates (batches). In the SPD[CRD,RCBD] case, batches of pulp uniquely define the whole-plot replicate
variable while in the SPD[RCBD,RCBD] case, the day variable uniquely defines the replicates. For both types of SPDs, the sub-plot
experimental error variance within a given prep method is estimated via the whole-plot replicate variable by sub-plot variable (temp) interaction.
The error degrees of freedom would be given by

(= D*(ts— 1) (11)

where n,, is the number of whole-plot replicates within a given whole-plot level and tg is the number of sub-plot treatment levels.

Table 10: Sub-Plot Structure for one Prep Method

Batch Number Nested within Prep Method

(Blocking variable at the Sub-Plot Level)
1 2 3
Temp 200 225 250 275 | 200 225 250 275 | 200 225 250 275
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The sub-plot error structure for prep method 1 is visualized in Figure 3a where the whole-plot replicate variable by temp interaction is plotted for
prep method 1. The individual pointsin Figure 3a are the tensile strengths for prep method 1 across each of the j whole plot replicates and k
cooking temperatures (i.e. the Y1j k's). Recall for RCBDs the block by treatment interaction is confounded with experimental error and any

difference in trestment effects observed across blocks is assume to be experimental error variance. Note that A4, A1, and A3 represent the

observed tensile strength differences at atemp of 225 and atemp of 200 across the three whole plot replicates for prep method 1. A different set
of deltas would be observed for each of the other temp level pairwise comparisons. If the A's differ from one replicate to the next, i.e. , lack of
parallelism, this suggests areplicate (block) by temp interaction. Since the design structure is an RCBD, the differences in the A's represent the
sub-plot error variance. Thisisidentical to the discussions and illustrations for the RCBD in Sections 3 and 4.2 regarding Figure 2a and Figure
2b.

Since there are atotal of three prep methods, the overall estimate of sub-plot error variance would be one in which the sub-plot error variances
are pooled across al of the levels of the whole-plot variable (prep method). One would have to look at all three plots (Figures 3a, Figure 3b and
Figure 3c) to get a sense for the overall sub-plot error variance. The magnitude of the sub-plot error variance would be reflected by the overall
lack of parallelism across Figures 3a, 3b and 3c. The overall degrees of freedom for the sub-plot experimental error would then be

ty(ny = D*(ts— 1) (12)

where the expression in (12) is smply that of (11) multiplied by the number of whole-plot levelst,,. Note that the expression for the sub-plot

error degrees of freedom in (12) does not depend on the type of design at the whole-plot level since the whole-plot replicates (whether true
replicates or replicates across blocks) form the blocks for the sub-plot design. Thisfact isillustrated in Table 7 [SPD(CRD,RCBD)] and Table 9

[SPD(RCBD,RCBD)] where we use the interaction effect of replication (day) by temp [(3-1)* (4-1)] nested within the three prep methods to
estimate the sub-plot error for atotal of (3-1)* (4-1)* 3 = 18 degrees of freedom.

To visualize the sub-plot effect Figures 3a, 3b and 3c provide the group means for each of the levels of temp. Let usfirst focus on Figure 3a

where one can get a general idea of the sub-plot treatment effect by the magnitude of the differencesin the overall sub-plot (temp) means
relative to the lack of parallelism. In observing the differences among the four temp means versus the mild lack of parallelism, one would
anticipate a possible temp effect for prep method 1. A similar evaluation would be done for prep method 2 and prep method 3 by looking at
Figures 3b and 3c. Overal, if the profiles are relatively parallel and widely separated for each of the whole-plot levels (prep method) then that
would indicate a potentially significant sub-plot effect.

At thispoint, it isimportant to remember that any observed sub-plot effect should not be interpreted until one has evaluated whether or not there
isasignificant interaction between the whole-plot and sub-plot effects. Observing Figures 3a, 3b and 3c one can also assess a potential whole-
plot by sub-plot interaction. For example, in prep method 1 (Figure 3a), the means for 275 and 250 are much closer to each other than they arein
prep method 3 (Figure 3c). Thisindicates a possible whole-plot by sub-plot interaction. Note for this example, the whole-plot by sub-plot
interaction isindeed significant (p-value = 0.0271 in Tables 7 and 9. The sub-plot error variance is used to assess the whole-plot by sub-plot
interaction.
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Figure 3. Replication(Block) by Temp interaction for Prep Method 1 (3a). Replication(Block) by Temp interaction for Prep Method 2
(3b). Replication(Block) by Temp interaction for Prep Method 3 (3c).
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Figure 3¢
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5. Conclusions

Providing the intuition behind the analysis of SPDsis not an easy task. In this paper we show that the whole-plot and sub-plot error structure can
be broken down into easy to understand CRD or RCBD designs. The whole-plot error is estimated by the effect of the replication variable nested
within the whole-plot factor for a CRD at the whole-plot level while the whole-plot error is estimated by the block by whole-plot factor
interaction effect for aRCBD at the whole-plot level. We also showed that at the sub-plot level, the error is estimated by pooling the replicate
(block) by sub-plot factor interaction effects over the whole-plot levels. All of these concepts were illustrated in an intuitive graphical approach,
thus allowing students to "see" the error structure and gain intuition of the statistical analysis by associating each source of variation in the SPD
ANOVA table with a corresponding plot.
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