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Abstract

Nearly al introductory statistics textbooks include a chapter on data collection methods that includes a detailed discussion of both random sampling methods and
randomized experiments. But when statistical inference is introduced in subsequent chapters, its justification is nearly always based on principles of random sampling
methods. From the language and notation that is used to the conditions that students are told to check, there is usually no mention of randomized experiments until an
example that is arandomized experiment is encountered, at which point the author(s) may offer a statement to the effect of "the randomization allows usto view the
groups as independent random samples.” But a good student (or even an average one) should ask, "Why?"

This paper shows, in away easily accessible to students, why the usual inference procedures that are taught in an introductory course are often an appropriate
approximation for randomized experiments even though the justification (the Central Limit Theorem) is based entirely on arandom sampling model.

1. Introduction

Consider how your introductory statistics students would solve the following exercise, which is taken from a previous version of Moore (2004, pg. 448):

Isred wine better than white wine? Observational studies suggest that moderate use of alcohol reduces heart attacks, and that red wine may have
specia benefits. One reason may be that red wine contains polyphenols, substances that do good things to cholesterol in the blood and so may reduce the
risk of heart attacks. In an experiment, healthy men were assigned at random to drink half a bottle of either red or white wine each day for two weeks.
Thelevel of polyphenolsin their blood was measured before and after the two-week period. Here are the percent changesin level for the subjects in both
groups:
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Red 3.5 8.1 74 4.0 0.7 49 84 7.0 5.5

White 3.1 05 -38 41 -06 27 19 -59 0.1

Is there good evidence that red wine drinkers gain more polyphenols on the average than white wine drinkers?

If you teach from just about any introductory textbook, your students will most likely choose to do a two-sample t-test. Y ou hope that they also check the necessary
conditions for using the two-sample t-test. Moore (2008, pg. 462) gives these conditions along with some advice on how to check them:

1. We have two simple random samples (SRSs), from two distinct populations. The samples are independent.
2. Both populations are normally distributed. The means and standard deviations of the populations are unknown. In practice, it is enough that the distributions
have similar shapes and that the data have no strong outliers.

How would your students evaluate those conditions for the exercise above? Does the fact that the stem of the problem contains the word "random” convince them that
thefirst condition is satisfied? Do your students read right over the word "populations” in the second condition and focus on the "In practice”" part? Or, do they
correctly recognize that these are not random samples from any type of populations, and so neither of these conditions are even close to being satisfied?

At this point in the course, you have probably already covered, in some detail, both random sampling methods and randomized experiments. Y ou may have even
convinced your students that, when possible, randomized experiments are preferable. And yet, when you get to inference, a student could easily get the impression that
you cannot use at-test on data from a randomized experiment since these are not random samples from any populations.

So what do we tell our students? If textbook authors say anything at all, they make a statement similar to Moore (2008, pg. 463), that "[b]ecause of the randomization,

we are willing to regard the two groups ... as two independent SRSs." My hope is that students (and teachers) would not take such a statement at face value. My fear is
that students (and teachers?) interpret that statement to mean that observational and experimental data aren't that different after all.

The problem here comes from the fact that the theory of inference, asit's developed in an introductory textbook, is based on random sampling (sampling distributions),
and yet many of the most interesting examples come from randomized experiments. This paper describes, using examples that are accessible to students (and teachers),
why the usual random sampling-based inference procedures are often an appropriate approximation for randomized experiments. Section 2 briefly illustrates inference
for two random samples. Section 3 introduces the analogous inference for randomized experiments. Section 4 compares and contrasts these two methods and
generalizes our findings. Section 5 considers one of the most common methods used for randomized experiments: analysis of variance. Section 6 summarizes the paper
and draws some conclusions.

2. Inference for Random Samples

To make theillustration easier for students, | prefer to start with a simpler example (as you will see, by "simpler” | mean "smaller sample size") like the following one
taken from Moore (2008, pg. 463):

How quickly do synthetic fabrics such as polyester decay in landfills? A researcher buried polyester strips in the soil for different lengths of time, then
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dug up the strips and measured the force required to break them. Breaking strength is easy to measure and is agood indicator of decay. Lower strength
means the fabric has decayed. Part of the study buried 10 strips of polyester fabric in well-drained soil in the summer. Five of the strips, chosen at
random, were dug up after 2 weeks; the other 5 were dug up after 16 weeks. Here are the breaking strengths in pounds:

2 weeks 118 126 126 120 129

16 weeks 124 98 110 140 110

The null and alternative hypotheses of interest areHy: 4 , = U jgand Hy: g 5 > [ 16, Where the alternative hypothesis indicates that there is more decay in 16 weeks. If

we are willing to pretend that these data are random samples from two populations, then we should check the normality condition. With such small sample sizes, we
are mostly looking for outliers. The histogram in Figure 1 shows no "strong outliers,” convincing us that the normality condition is reasonable and we can do a two-

sample t-test.
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Figurel: Breaking strengths of 10 pieces of polyester buried for 2 weeks (red) and 16 weeks (white).

A few calculations show that t=0.99 and the p-value is 0.1857. Now, think alittle harder about what that p-value represents. It is the probability, under Hy, of getting a

t-statistic equal to or larger than the observed value. Thisisthe areain the tail of thet distribution to the right of t=0.99. Why do we use the t distribution? Because it is
the appropriate sampling distribution. That is, it is the distribution of the t-statistic in all possible random samples from two identical normal distributions.

3. Inference for Randomized Experiments
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The random sampling model uses randomness in the sampling scheme. By considering all possible samplesin that scheme, the sampling distribution is obtained. A
randomized experiment uses randomness differently -- in the assignment of treatments to the subjects. So it is natural to consider all possible assignments of the
treatments to the subjects. If Hg is true, the fabric's breaking strength will be the same regardless of the treatment it is assigned. Calculating the t-statistic for each of the

possible randomizations results in the randomization distribution. | illustrate this to students with a simple piece of R code (see Appendix A) that randomizes the 10

pieces of fabric (and their breaking strengths) into two groups of 5 and calcul ates the t-statistic. Repeating this multiple times shows students how each possible
randomization gives a different result. Figure 2 shows three such randomizations.

> randomize (two,sixteen) > randomize(two,sixteen) > randomize (two,siXteen)
$two $two $two
[1] 110 126 120 110 118 [1] 124 126 129 110 140 [1] 120 124 126 110 129
$sixteen $sixteen $=ixteen
[1] 126 129 124 98 140 [1] 118 126 120 98 110 [1] 118 126 98 110 140
$t.statistic $t.statistic $t.statistic

t T T
-0.87114 1.669982 0.4339051

Figure 2: Three possible randomizations of the polyester data with t-statistics.

Next we can consider all possible randomizations by listing them systematically. Students quickly see that there are alot. Evenin this small data set there are

[ l,ﬂ] — 257 possible randomizations, from which at-statistic can be calculated for each. This randomization distribution is pictured in Figure 3.
o
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Randomization Distribution
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Figure 3: Randomization distribution of the t-statistic for the polyester data.

Analogous to the sampling distribution, the p-value in arandomization distribution is simply the proportion of t-statistics equal to or greater than the observed value
(t=.99 in this case). The red shaded areain Figure 3 represents this p-value, which is 0.1865.

4. When Do They Agree and When Do They Not?

Overlaying the randomization distribution with the t distribution makes it clear that the sampling distribution is a good approximation to the randomization distribution.
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In Figure 4, the blue shaded area represents the p-value cal culated from thet distribution, which is very close to the correct p-value from the randomization distribution.
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Figure 4: Randomization distribution of the t-statistic for the polyester data overlayed with the t distribution.

The question remains: When does the t distribution approximate the randomization distribution satisfactorily? Students can see the answer to that by looking at several
examples. Suppose that the conditions required for the t-test were not met and the data had an outlier. In particular, suppose that the smallest breaking strength of 98
pounds was actually even smaller. Figure 5 shows the randomization distributions and t distributions for the polyester data when this smallest breaking strength is 88,
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78, 68, and 58 pounds.
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Figure 5: Randomization and t distributions for the polyester data when the smallest breaking strength is (a) 88, (b) 78, (c) 68, and (d) 58 pounds.
Asthis breaking strength becomes more of an outlier, the t distribution becomes less and less of a good approximation to the randomization distribution.

If the data had come from two random samples from two normal populations, this outlier would indicate a problem with the normality condition. In fact, we have data
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from arandomized experiment, but the outlier is still indicating a problem -- with how well the t distribution will approximate the randomization distribution. And so
students can see that the check of the normality condition for random sampling is actually relevant for randomized experiments. This helps justify Moore's (2008, pg.
463) statement that "[b]ecause of the randomization, we are willing to regard the two groups of fabric as two independent SRSs."

Returning to the red and white wine example, we can see how good the approximation can be even with moderate sample sizes. Figure 6 shows the randomization

=
distribution for all { Lﬂ ) = 48,620 possible randomizations and the approximate t distribution. The randomization p-value is 0.00068, while the t-test gives a p-value of

0.00085.
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Figure 6: Randomization and t distributions for the red and white wine data.

5. Analysis of Variance

We can illustrate how well the normal theory procedure approximates the appropriate randomization test for arandomized experiment in other settings as well. One of
the most commonly used procedures to analyze arandomized experiment is the analysis of variance (ANOVA). The theory behind the F distribution that is used for
ANOVA is bhased on random sampling from normal populations. In arandomized experiment, the subjects are randomly assigned to the k groups. The randomization
distribution of the F-statistic can be found by calculating the F-statistic for each possible randomization. The polyester example described earlier actually had four
treatment groups -- two weeks, four weeks, eight weeks, and 16 weeks -- each with five strips of fabric (Moore 2008, pg. 653):

2 weeks 118 126 126 120 129
4 weeks 130 120 114 126 128
8 weeks 122 136 128 146 140

16 weeks 124 98 110 140 110

There are atotal of [.-“-, '?3. !-‘,} — 11,732,745, (024 possible randomizations of the 20 pieces of fabric into four equal size groups. Thisistoo many to easily

calculate, but we can get an accurate estimate of the randomization distribution by sampling from the possible randomizations (Dwass 1957). Figure 7 shows the
randomization distribution of the ANOVA F-statistic from 1,000 (random) randomizations of the data. This randomization distribution is overlayed with the F
distribution with 3 and 16 degrees of freedom that is used by the normal theory approximation. We see that the F distribution is a good approximation to the
randomization distribution. The randomization p-value is 0.083 and the p-value from the F distribution is 0.084.
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Figure 7: Randomization distribution of the F-statistic overlayed with the F distribution for the polyester data.

6. Conclusion

Introductory statistics textbooks have come along way in the last 15 years by including much more information on data collection methods, including both random

sampling methods and randomized experiments. But, the way that statistical inference is developed in nearly al introductory textbooks follows directly from random

sampling arguments. Randomized experiments are nearly ignored and, at least from some textbooks, students could actually get the impression that the sampling-based

methods cannot be used for randomized experiments. This paper gives an easy way to illustrate to students (1) the correct randomization approach to inference, and (2)
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why the normal theory methods still work.

Some would argue that we should teach the normal theory methods only as an approximation to (and therefore after) the randomization methods, or possibly not at all
(Cobb 2007). While | have some sympathy for such aposition, my intent here is simply to provide some ideas to supplement an introductory course as it is most

commonly taught. These ideas are easy to implement and not difficult for students to grasp. In addition, they provide afirst step to move in the direction suggested by
Cabb (2007).

Appendix A

All calculations and graphs in this paper were donein R (R Development Core Team 2008), which isfreely available at http://www.R-project.org. This section
contains the R code used for the computations in this paper. The function r andomi ze produces randomizations of observations into two groups as shown in Figure 2.

random ze <- function(x,y){
z <- c(X,Yy)
XX <- z[ind <- sanmple(length(z),length(x))]
yy <- z[-ind]
result <- list(xx,yy,t.test(xx,yy)$statistic)
nanes(result) <- c(deparse(substitute(x)), deparse(substitute(y)),"t.statistic")
return(result)

}

The function pl ot . r and produces the randomization distribution of the two-sample t-statistic as shown in Figure 3, Figure 4, Figure 5 and Figure 6, as well asthe
randomization and t distribution p-values.

plot.rand <- function(x,y, shade=T,t.dist=T,t.shade=T,t.obs=T,
br eaks=50, pause=F, x|l ab=bquot e(paste(italic(t)," Statistics")),
mai n="Random zation Distribution",...){

m <- | engt h(x)

n <- length(y)

z <- c(x,y)

S <- sum(c(x,y))

SS <- sum(c(Xx,y)"2)

calc.t <- function(x){
SX <- sum Xx)
Sy <- S - SX
SSx <- sum(x"2)
SSy <- SS - SSx
return((Sx/mSy/n)/sqrt((SSx-(Sx*"2)/m/(m(m1))+(SSy-(Sy*2)/n)/(n*(n-1))))
1
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t.stat <- conbn(z,mcalc.t)
t.test.obs <- t.test(x,y,alternative="greater")

hist.out <- hist(t.stat, probability=T, breaks=breaks, x| ab=xl ab, mai n=main,...)
box()
i f(t.obs){
abline(v=t.stat[1],lty=2, col =2)
nt ext (bquot e(paste(italic(t),” =",.(round(t.stat[1],2)))),
3,-1,at=t.stat[1], adj =-. 2, cex=. 8, col =2)
}
i f(shade){
no. shade <- sun(hist.out$mds <= t.stat[1])
i f(pause) null <- locator(1)
par (new=T)
hi st (t.stat, probability=T, breaks=hi st. out $br eaks,
col =c(rep(0, no. shade), rep(2, | engt h( hi st. out $br eaks) - no. shade-1)),
axes=F, ann=F, add=T, densi t y=30, bor der =1)
if(t.obs) abline(v=t.stat[1],|ty=2, col =2)
}
if(t.dist){
r.br <- range(hist. out $breaks)
XX <- seq(r.br[1],r.br[2],]ength=150)
i f(pause) null <- locator(1)
l'i nes(xx, dt(xx,t.test.obs$paraneter), col =4)
if(t.shade & t.dist){
i f(pause) null <- |ocator(1l)
yy <- xx[xx>t.stat[1]]
yt <- dt(xx[xx>t.stat[1]],t.test.obs$paraneter)
lines(yy, yt,type="h", col =4)
}
}

p.val ues <- c(nean(t.stat >= t.stat[1]),t.test.obs$p. val ue)
nanes(p. val ues) <- c("Randoni zation","t-test")
return(p.val ues)

}

Thefunction pl ot . r and. anova produces the randomization distribution of the one-way analysis of variance F-statistic as shown in Figure 7, aswell asthe
randomization and F distribution p-values.

pl ot.rand. anova <- function(x, grp, shade=T, F. di st =T, F. shade=T, F. obs=T,
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br eaks=50, pause=F, B=1000, x| ab=bquot e(paste(italic(F)," Statistics")),
mai n="Randomi zation Distribution",...){
if(length(x) !'= length(grp))
st op(" Response and factor vectors nust be the sane | ength")

if(lis.factor(grp)) grp <- as.factor(grp)
F.stat <- NULL
F.stat[1] <- anova(lmx ~ grp))$F[ 1]
F. p.val ue. obs <- anova(lnmx ~ grp)) $P[ 1]
F.df <- anova(lmx ~ grp)) $Df
for(i in 2:B){
F.stat[i] <- anova(l m(sanple(x) ~ grp))$F 1]

}
hi st.out <- hist(F.stat, probability=T, breaks=breaks, x| ab=x| ab, mai n=mai n, . .
box()
i f(F.obs){
abline(v=F.stat[1],lty=2, col =2)
nt ext (bquot e(paste(italic(F)," =",.(round(F.stat[1],2)))),
3,-1,at=F.stat[ 1], adj =-. 2, cex=. 8, col =2)
}
i f(shade){
no. shade <- sunt(hist.out$mds <= F.stat[1])
i f(pause) null <- locator(1)
par (new=T)
hi st (F. st at, probabi |l ity=T, breaks=hi st . out $br eaks,
col =c(rep(0, no. shade), rep(2, 1 ength(hist. out$breaks)-no. shade-1)),
axes=F, ann=F, add=T, densi t y=30, bor der =1)
i f(F.obs) abline(v=F.stat[1],lty=2, col =2)
}
i f(F. dist){
r.br <- range(hist. out $breaks)
XX <- seq(r.br[1],r.br[2],I] engt h=150)
i f(pause) null <- |ocator(l)
l'i nes(xx, df (xx, F.df[1],F.df[2]), col =4)
i f(F.shade & F.dist){
i f(pause) null <- locator(1)
yy <- xx[xx>F.stat[1]]
yt <- df (xx[xx>F.stat[1]],F.df[1], F.df[2])
lines(yy, yt,type="h", col =4)
}
}
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p.values <- c(nean(F.stat >= F.stat[1]), F. p.val ue. obs)
nanes(p. val ues) <- c("Randoni zation","F-test")
return(p.val ues)

}
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