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Abstract 
Modern approaches for information technology based blended education utilize a variety of novel instructional, computational and 
network resources. Such attempts employ technology to deliver integrated, dynamically linked, interactive content and multi-
faceted learning environments, which may facilitate student comprehension and information retention. In this manuscript, we 
describe one such innovative effort of using technological tools for improving student motivation and learning of the theory, 
practice and usability of the Central Limit Theorem (CLT) in probability and statistics courses. Our approach is based on 
harnessing the computational libraries developed by the Statistics Online Computational Resource (SOCR) to design a new 
interactive Java applet and a corresponding demonstration activity that illustrate the meaning and the power of the CLT. The CLT 
applet and activity have clear common goals; to provide graphical representation of the CLT, to improve student intuition, and to 
empirically validate and establish the limits of the CLT. The SOCR CLT activity consists of four experiments that demonstrate the 
assumptions, meaning and implications of the CLT and ties these to specific hands-on simulations. We include a number of 
examples illustrating the theory and applications of the CLT. Both the SOCR CLT applet and activity are freely available online to 
the community to test, validate and extend (Applet: http://www.socr.ucla.edu/htmls/SOCR_Experiments.html and Activity: 
http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_GeneralCentralLimitTheorem). 

1. Introduction 

1.2 General 

Contemporary Information Technology (IT) based educational tools are much more than simple collections of static lecture notes, 
homework assignments, and web-based applets posted on course-specific Internet sites. Over the past five years, a number of 
technologies have emerged that provide dynamic, linked, and interactive learning content with heterogeneous points-of-access to 
educational materials (Dinov, 2006c). Examples of such new IT resources include common web-places for course materials 
(BlackBoard, 2006; MOODLE, 2006), complete online courses(UCLAX, 2006), Wikis (SOCRWiki, 2006), interactive video 
streams (ClickTV, 2006; IVTWeb, 2006; LetsTalk, 2006), audio-visual classrooms, real-time educational blogs (Brescia & Miller, 
2006; PBSBlog, 2006), web-based resources for blended instruction (WikiBooks, 2006), virtual office hours with instructors 
(UCLAVOH, 2006), collaborative learning environments (SAKAI), test-banks and exam-building tools (TCEXAM) and resources 
for monitoring and assessment (ARTIST, 2006; WebWork).  

This explosion of tools and means of integrating science, education and technology has fueled an unprecedented variety of novel 
methods for learning and communication. Many recent attempts (Blasi & Alfonso, 2006; Dinov, 2006c; Mishra & Koehler, 2006) 
have demonstrated the power of this new paradigm of IT-based blended instruction. For instance, in statistics education there are a 
number of excellent examples where fusing new pedagogical approaches with technological infrastructure allowed instructors and 
students to improve motivation and enhance the learning process (Forster, 2006; Lunsford, Holmes-Rowell, & Goodson-Espy, 
2006; Symanzik & Vukasinovic, 2006). In this manuscript, we build on these and other similar efforts and introduce a general, 
functional and dynamic central limit theorem (CLT) applet along with a corresponding hands-on activity. 

1.2 The CLT 
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There are various statements of the central limit theorem, but all of them represent weak-convergence results regarding (mostly) 
the sums of independent identically-distributed (random) variables (Davidson, 1994; Lyapunov, 1906). There are also versions of 
the CLT for dependent variables (Merlev`ede, Peligrad, & Utev, 2006). Perhaps, the most frequently used and practically 
important statement of the central limit theorem is in terms of (arithmetic) averages of random variables sampled from a process 
with well-defined and finite first two moments. In this case, CLT implies that the average will follow approximately a normal 
distribution, as the sample-size increases (Aberson, Berger, Healy, Kyle, & Romero, 2000). Various generalized versions of the 
CLT may be phrased in terms of products of random variables (DeGroot, 1970), convolution of densities (Chung et al., 2001), or 
as the product of characteristic functions. (Formanov, 2002) The CLT is the statistical analogue of the Grand Unified Theory in 
physics (Hall & Nomura, 2002). As such, the CLT is one of the most celebrated results in the field. The history of the CLT is 
equally as impressive as its deep scientific value (Tijms, 2004). 

Many undergraduate and graduate classes use the following statement of the central limit theorem: 

CLT: Let X1,…,Xn, … be a random sample (independent and identically distributed) from a (native) distribution with well-defined 

mean μX and variance σX
2( |μX| < ∞ and σX

2 < ∞). Then as n increases, the sampling distributions of the sample average  

 and the total sum  
 

 approach Normal distributions with corresponding 
 

 and  

In essence, the CLT implies that the Normal distribution is the center of the universe of all nice distributions. This is the reason 
why we encounter so frequently estimates involving arithmetic-averaging. In a way, the pathway from a nice distribution to 
Normal distribution is paved by sample averages. In other words, the CLT provides a unifying framework for all (nice) 
distributions by facilitating explicit roadmaps from them to Normal distribution. A useful analogue to CLT is the physics Grand 
Unifying Theory, which similarly attempts to unite the theory behind the fundamental forces in nature. 

The ramifications of the CLT go beyond the scope of this interpretation. For example, one may wonder if there are other types of 
population-parameters or sample-statistics that have similar limiting properties. How large does the sample size have to be to 
ensure normality of the sample average or total sum? Does the convergence depend on the characteristics of the native distribution 
(e.g., shape, center, dispersion)? How about weighted averages, non-linear combinations, or more general functions of the random 
sample? People exposed to the CLT frequently ask many such interesting questions. Some may have known theoretical answers 
(exact or approximate); other questions may be better addressed empirically by simulations and experiments (Garfield, 2002). 

1.3 Other Similar Efforts 

Several other groups have developed hands-on activities paired with interactive applets that demonstrate the foundation of the 
CLT. Among these efforts are the Cal Poly ISCAT collection (Lunsford et al., 2006; Rossman, Chance, & Ballman, 1999), Cal 
State CLT Applet (Stanton, 2005); Vienna University Learning by Simulation (Lohninger, 2008); Northwestern NetLogo 
modeling-and-simulation environment (Abrahamson & Wilensky, 2004); Star Library CLT Activity (Andrews, 2005); Rand CLT 
applet (RANDCLT, 2007), WebStat (West & Ogden, 1998) and many others. A "CLT" keyword search at www.causeweb.org 
yields a number of instructional plans, activities, aids and resources for technology-enhanced materials for teaching the central 
limit theorem. 

Each of these applets, activities and resources has unique features that make it useful in its specific context. Some affirm ones 
intuitive beliefs, while others reinforce practice learning or address specific CLT-related questions, typically using one native 
distribution model. In this manuscript, native (distribution or process) refers to the underlying population characteristics. 

1.4 CLT Instructional Challenges 

We have extensive CLT pedagogical experience based on graduate and undergraduate teaching, interacting with students (and 
teaching assistants) and evaluating students’ performance in various probability and statistics classes. In our endeavors, we have 
used a variety of classical (e.g., mathematical formulations), hands-on activities (e.g., beads, sums, Quincunx) and technological 
approaches (e.g., applets, demonstrations). Our prior efforts have identified the following instructional challenges in teaching the 
concept of the CLT using purely classical and physical hands-on activities. Some of these challenges may be addressed by 
employing modern IT-based technologies, like interactive applets and computer activities: 

What is a native process (native distribution), a sample, a sample distribution, a parameter estimator, a sample-driven 
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numerical parameter (point) estimate or a sampling distribution?  
What is the relationship between the inference of the CLT and its applications in the real world?  
How does one improve CLT knowledge retention, which seems to decay over time? Are there paramount characteristics we 
can demonstrate in the classroom, which may later serve as a foundation for reconstructing the detailed statement of the 
CLT and improving communication of CLT meaning and results?  
How does one directly involve and challenge students in thinking about CLT (in and out of classroom)? 

Traditional CLT teaching techniques (symbolic mathematics and physical demonstrations) are typically restricted in terms of time 
and space (e.g., shown once in class) and may have the limitations of involving one native process, studying one population 
parameter and restricting the scope of the inference (e.g., sample-size constraints). 

Modern IT-based blended instruction approaches address many of these CLT teaching challenges by utilizing the Internet and the 
available computational power. For example, a Java CLT applet may be evoked repeatedly under different initial conditions 
(choosing sample-sizes and number of experiments, native process distributions, parameters of interest, etc.). Such tests may be 
performed from remote locations (e.g., classroom, library, home), and may provide enhanced interactive features (e.g., fitting 
Normal model to sampling distribution) demonstrated in different experimental modes (e.g., intense computational vs. visual 
animated sampling). Such features are especially useful for active, visual and deductive learners. Furthermore, interactive 
demonstrations are thought to significantly enhance the learning process for some student populations (Demir, 2006; Laakso, 
Salakoski, Grandell, Qiu, Korhonen, & Malmi, 2005; Masters, Madhyastha, & Shakouri, 2005). 

Students in probability and statistics classes are generally expected to master difficult concepts that ultimately lead to 
understanding the basis of data variation, modeling and analysis. For many students relying on procedural manipulations and 
recipes is natural, perhaps because of their prior experiences with (deterministic) Newtonian sciences. Various statistics-education 
researchers have experimented with technology to explore novel exploratory data-analysis techniques that emphasize making 
sense of data via data manipulation, visualization and simulation. Such investigators refer to statistical literacy as the process of 
acquiring and utilizing intuition for discovering and interpreting trends, proposing solutions and counterexamples to basic 
problems in probability, as well as understanding statistical data modeling and analysis (Ben-Zvi & Garfield, 2004). 

Because the concepts of distribution, variation, probability, randomness, modeling and estimation are so ubiquitously used and 
entangled (Wild, 2006), instructors frequently forget that these notions should be defined, explained and demonstrated in (most) 
undergraduate probability and statistics classes. Various sampling and simulation applets and demonstrations are quite useful for 
this purpose. 

1.5 The SOCR Resource 

The UCLA Statistics Online Computational Resource (SOCR) is a national center for statistical education and computing. The 
SOCR goals are to develop, engineer, test, validate and disseminate new interactive tools and educational materials. Specifically, 
SOCR designs and implements Java demonstration applets, web-based course materials and interactive aids for IT-based 
instruction and statistical computing (Dinov, 2006b; Leslie, 2003). Various types of users (e.g., instructors, students and 
researchers) may find the SOCR resources useful. The SOCR Motto, “It’s Online, Therefore It Exists!", implies that all of these 
resources are freely available on the Internet (www.SOCR.ucla.edu).  

There are four major components within the SOCR resources: computational libraries, interactive applets, hands-on activities and 
instructional plans. The SOCR libraries are typically used for statistical computing by external programs (Dinov, 2006a). The 
interactive SOCR applets are subdivided into Distributions, Experiments, Analyses, Games, Modeler and Charts. The hands-on 
activities are dynamic Wiki pages (SOCRWiki, 2006) that include a variety of specific instances of demonstrations of the SOCR 
applets. The SOCR instructional plans include lecture notes, documentation, tutorials and guidelines about statistics education. We 
have decided to develop and disseminate SOCR educational resources using Wiki pages, as the Wiki infrastructure greatly 
facilitates building community-based, version-controlled and dynamic materials. 

1.6 Goals of the SOCR CLT Activity 

The goals of the SOCR CLT activity are as follows: 

to provide an intuitive notion of sampling from any process with a well-defined distribution;  
to motivate and facilitate learning of the central limit theorem;  
to empirically validate that sample-averages of random observations (most processes) follow approximately a Normal 
distribution;  
to empirically demonstrate that the sample-average is special and other sample statistics (e.g., median, variance, range, etc.) 
generally do not have distributions that are normal;  
to illustrate that the expectation of the sample-average equals the population mean (and the sample-average is typically a 
good measure of centrality for a population/process); 
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to show that the variation of the sample average rapidly decreases as the sample size increases   
to provide empirical evidence for and against the “golden rule" of using sample sizes of 30;  
to reinforce the concepts of native distribution, sample, sample distribution, sampling distribution, parameter estimator and 
data-driven numerical parameter estimate. 

2. Design and Methods 

2.1 SOCR CLT Applet 

The SOCR CLT applet is designed as a meta-experiment (part of SOCR Experiments, integrating functionality from SOCR 
Distributions, Charts and Modeler). In this applet, we allow the most flexibility in terms of choosing the native process 
distribution, population parameters of interest, sample-sizes, number of experiments, animated and computational sampling of 
data. Figure 1 illustrates the main components of the applet interface. This applet may be accessed directly online by going to the 
SOCR Experiments (http://www.socr.ucla.edu/htmls/SOCR_Experiments.html) and selecting Sampling Distribution CLT 
Experiment from the drop-down list of experiments (top-left). There are tool-tips included for every widget (active graphical 
component) in this applet. Applet tool-tips (pop-up information fields describing interface features) are activated by bringing the 
mouse over a component within the applet window. The most important components of this applet are boxed in blue rectangles on 
Figure 1 and explained below: 

o                    the main action buttons in the CLT experiment; 

o                    button for refreshing the summary statistics table after completion of a sampling experiment;  

o                    two groups of fields allowing control over the type and sample-size for each of the (two 
possible) parameters of interest; 

o                    progress monitor (for large sampling tasks);  

o                    a button to go directly to the SOCR CLT Wiki Activity (see below); 

o                    tab-panel selection (Graphical Histogram and Numerical Summaries (default) and Distribution selection); 

o                    four distribution graphs (native population, last sample and the sampling distributions of the
two parameters of interest chosen by the user).  
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Figure 1: SOCR CLT Applet interface. 

In addition to other SOCR libraries, this applet utilizes ideas, designs and functionality of the Rice Virtual Laboratory of Statistics 
(RVLS) and the University of Alabama Virtual Laboratories in Probability and Statistics (VirtualLabs). 

The generality and usability of the SOCR CLT applet comes from the fact that the user has full control over of each of the features 
listed above and because the applet allows a very large number of possibilities to test and observe the power of the central limit 
theorem. In particular, all of the CLT activity goals presented in section I.f, above, can be addressed using this applet. There is a 
second panel (called Distributions) in this applet (shown on the bottom of Figure 1), which allows the selection of the native 
process we wish to sample from. In the CLT Applet, the user may manually generate a distribution or choose one from the 50+ 
families of SOCR Distributions (including commonly used distributions like the Binomial and Normal, as well as more exotic 
ones like  the Rayleigh and the von Mises, http://wiki.stat.ucla.edu/socr/index.php/About_pages_for_SOCR_Distributions). In the 
Distribution tab-panel the user may select specific parameters for the chosen distribution, if appropriate. This large space of 
possibilities makes this applet applicable in a variety of CLT hands-on demonstrations and activities tailored for a specific 
curriculum. The SOCR CLT activity, discussed below, is just one instance of such specific instructional activity that illustrates the 
theory, promotes the practice, and emphasizes the usability of the CLT. Using this template, others may develop their own 
demonstrations of the CLT directly on the SOCR Wiki Resource or on their own web-servers. 

2.2 SOCR CLT Activity 

The SOCR CLT activity is available online 
(http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_GeneralCentralLimitTheorem) and accessible from any 
internet-connected computer with a Java-enabled web browser. The activity includes dynamic links to web resources on the CLT, 
interactive CLT demonstrations, and relevant SOCR resources. 

Following the outline of its goals, the CLT experimental settings are described online in the second paragraph of the SOCR CLT 
Wiki activity. Each of the four experiments suggested in the activity addresses different feature sets of the applet and demonstrates 
separate characteristics of the CLT. 
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Figure 2: SOCR CLT Activity: Snapshot of the first experiment. 

The first experiment depicts the effects of small sample-sizes on the sampling distributions of the sample average and the sample 
variance, Figure 2. The arrows in this figure point to the most important features in this experiment (left-to-right and top-to-
bottom): 

o                    button is for taking one sample from the selected distribution;  

o                    button is for recomputing the sample and sampling distribution summary statistics in the tables to the 
right;  

o                    two drop-down lists allow the user to select the sample-sizes for one or two sampling distributions;  

o                    second graph panel shows the distribution of the last sample;  

o                    third graph panel represents the sampling distribution of the first parameter (mean, in this case); 

o                    the bottom graph panel shows the sampling distribution of the second parameter (variance); and 

o                    the data tables on the right show the summary statistics for all 4
distributions (native, sample, sampling (mean) and sampling (variance)).  

The user observes graphically the process of random sampling from a distribution (in this case Normal). At each run of the 
experiment, the user visually tracks the meaning of the sample statistics calculation and the construction of the appropriate 
sampling histogram. Using the applet’s Refresh Stats Table button, one computes the basic summaries for the distributions of the 
sample statistics (the right panel). Summary statistics are computed for all processes: the native population distribution (row 1), 
last sample (row 2) and the two sampling distributions, in this case the mean and the variance (rows 3 and 4). 

The second experiment portion of the SOCR CLT activity explores the numerical characteristics of the sample average and 
sample-variance distributions.  Some of these characteristics computed are the mean, standard deviation, skewness, and kurtosis. 
Figure 3. The user may inspect the goodness-of-fit between the sampling distribution and a Normal distribution with the same 
first two moments. 
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Figure 3: SOCR CLT Activity: Snapshot of the second experiment. 

This experiment draws parallels between the sampling distribution statistics (rows 3 and 4) and their analogues from the native 
population (on the top row). For example, the mean of the multiple sample-averages is about the same as the mean of the native 

population. On the other hand, the standard deviation of the sample-averages is about , where σ is the standard deviation of 
the original native process. 

The third experiment involves sampling from an arbitrary SOCR Distribution, Figure 4. This demonstrates that the central limit 
theorem is valid for numerous families of distributions. This experiment may be used to empirically validate that the sample 
average is a unique data statistics that has invariant limiting of its sampling distribution. In addition, the convergence of the 
sampling distribution to a Normal may be validated, relative to the chosen sample-size. 

 
 

Figure 4: SOCR CLT Activity: Snapshot of the third experiment. 

The fourth experiment in this activity illustrates how to generate and sample from a new distribution not included in the list of 
SOCR Distributions, Figure 5. The user may draw the shape of a hypothetical distribution by clicking and dragging the mouse in 
the top graphing canvas on the applet. This functionality allows exploring the assumptions and convergence guaranteed by the 
CLT for continuous and discontinuous, symmetric and asymmetric, unimodal and multi-modal, leptokurtic and mesokurtic, and 
other types of distributions or processes. Also, we explore the differences between two data-driven estimates for the population 
centrality – the sample mean and the sample median. 
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Figure 4: SOCR CLT Activity: Snapshot of the fourth experiment. 

3. Discussion and Utilization 

3.1 Classroom use of the pair of CLT applet and its corresponding activity. 

There are a variety of ossible applications of these resources in a general classroom setting. Instructors should consider fine-tuning 
these materials to their specific course curricula. In the past, we have experimented in a number of ways with these materials. A 
step-by-step of illustration of one possible strategy for using these resources in a classroom is described below. We first choose a 
distribution that we want to start with (typically Normal or constructed by clicking and dragging the mouse in the top graphing 
panel). Then the instructor begins an interactive discussion with the students, which involves applet usage, CLT properties, 
examples and counterexamples, student feedback and computer simulations: 

Such questions to be discussed are: 

Can you think of a process that may have this distribution?  
Now draw a random sample of size 20 from this distribution.  
What is the mean of this sample (look in row 2)? What is the corresponding standard deviation?  
What does the distribution of this sample look like? What would change if we increased the sample size to 100 or 1,000? 
Try it and think of a reason for that phenomenon. (This point helps demonstrate that the distribution of the sample will tend 
to look like the parent distribution, as the sample-size increases).  
Now let's go back and draw many samples of size 20, again from the same distribution, and compute the mean of each of 
them. If we draw 100 samples each of size 20 how many sample means do we have? Their distribution is called the 
sampling distribution of the sample mean. Similarly, we can construct the sampling distributions for other parameters (e.g., 
median, variance, range, etc.) 
What does the distribution of the sample mean (row 3) look like? Does it look like the one in the second row? Does it 
depend on the sample-size?  
Now, compare the distribution of the last sample and the sampling distribution of the sample mean. What do you 
conclude? Why?  
Compare also the mean and standard deviations of the distributions in rows 2 and 3. Repeat the exercise with another 
distribution (selected from the drop-down list of distributions in the second tab-panel in the main window, or drawn one by 
hand directly in the top row graphing canvas).  
Can we make the same conclusion as before? Do you think that if we try another distribution you will come to the same 
conclusion? Try it and answer the question empirically. Try it with your most or least favorite distributions.  
Let’s shown the outcome of running the experiment a number of times with the population mean and median as parameters 
of interest. Notice the sampling distributions of the sample average and the sample median.  
After discussing the situations where the CLT conclusions are valid, the instructor may choose to demonstrate situations 
where CLT-like results are not valid. These may include small sample sizes, distributions with ill-posed first two moments 
(e.g., Cauchy) and different sample statistics (e.g., median, range). Such counterexamples also provide valuable information 
to students. 
Finally, an assessment question may be appropriate (e.g., quiz). 

The instructor builds complexity as he or she is satisfied with students’ responses, attentiveness and comprehension. A homework 
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assignment that reinforces these CLT principles is appropriate in many cases and may improve knowledge retention. 

3.2 Real-Life examples of the CLT. 

There are many practical examples using CLT to solve real-life problems. Here are some instances, which use CLT to approximate 
probabilities of interests and can be solved using SOCR resources. 

Suppose a call service center expects to get 20 calls a minute for questions regarding each of 17 different vendors that rely 
on this call center for handling their calls. What is the probability that in a 1-minute interval they receive less than 300 calls 
in total?  
Let Xi be the random variable representing the number of calls received about the ith vendor within a minute, then Xi 
~Poisson (20), as Xi is the number of arrivals within a unit interval and the mean arrival count is given to be 20. The 

distribution of the total number of calls  By CLT, , as 
an approximation of the exact distribution of the total sum. Using the SOCR Poisson Distribution applet 
(http://www.socr.ucla.edu/htmls/SOCR_Distributions.html) one can compute exactly the P(T<300 | T~Poisson(17×20))= 
0.014021. On the other hand, one may use the CLT to compute a Normal approximation probability of the same event,  

 
 
The last quantity is obtained using the SOCR Normal Distributions applet, without using continuity correction. Using 

continuity correction the approximation improves, P(T<300 |  Arguably, 
the CLT-based calculation is less intense and more appealing to students and trainees, compared to computing the exact 
probability. 

It is believed that the life-time, in hours, of light-bulbs are exponentially distributed, say , mean expected life of 
2,000 hours. Recall that the Exponential distribution is also called the Mean-Time-To-Failure distribution. You can find 
more about it from the SOCR Exponential Distributions applet. Suppose a University wants to purchase 100 of these light-
bulbs and estimate the average life-span of these light bulbs. What is a CLT-based estimate of the probability that the 
average life-span exceeds 2,200 hrs? 

Denote  Notice that in this case the exact distribution of is (generally) not exponential, 
even though the density may be computed in closed form (Khuong & Kong, 2006). If we use the CLT, however, we can 
approximate the probability of interest  

 

as we know that the mean and the standard deviation of  and the standard deviation of 

 Therefore,  , using the CLT approximation and the SOCR Normal Distributions 
calculator, Figure 6. 
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Figure 6: Calculating the approximate probability for the average of the Exponential variables. 

A weekly TV talk show from broadcaster U invites viewers to call to express their opinions about the program. Many people 
call, which sometimes results in quite a long wait time until the host replies. The time it takes the host to respond tends to 
follow an exponential distribution with mean of 50 seconds. A competing TV network W has another similar talk show and 
would like to respond to callers faster than broadcaster U. To do that W executives need to know how long U takes to 
respond. So, W personnel make 25 calls per week to the U show (for 50 weeks) and measure how long it took the U host to 
respond. Then W executives compute the average length for their weekly samples of size 25. At the end of the year, they 
plot the distribution of the sample means. What are the center, spread and shape of this distribution? Find out using the 
SOCR CLT applet. Approximately, what proportion of time is the average weekly wait time for the U broadcaster exceeding 
45 seconds? Figure 7 shows the corresponding sampling simulation. Notice the differences in the summary statistics 
between the native distribution, the sample distribution and the sampling distribution for the mean. Because of CLT, the 
answer of this exercise may then be computed approximately using the SOCR Normal Distribution,  

 
 
This chance may also be computed empirically by counting the number of weekly samples that generate an average wait 
time over 45 seconds and dividing this number by 50 (the total number of weeks in this survey). 
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Figure 7: SOCR CLT Applet using Exponential (l=0.02) and sampling 50 samples, each of size 25. 

Suppose a player plays a standard Roulette game (SOCR Roulette Experiment, 
http://www.socr.ucla.edu/htmls/SOCR_Experiments.html) and bets $1 on a single number. Find the probability the casino 
will make at least $28 in 100 games. One way to solve this problem is to find the distribution of the casino's payoff first: If Y
is the random variable representing the payoff for the casino in a single game, the probability mass function for Y is given 

by  as there are 38 numbers in total (0, 00, 1, 2, …, 36). The player may place a bet on any 
of these numbers, with a player success payoff of $35 (casino loss of $35) and a player loss of $1 (casino win of $1). 

Therefore, the casino expected return of the game is and the variance of the casino return is 

 and the range of the return is [-35 : 1], for one game.  

The exact probability of interest may be computed by using the Binomial Distribution. If the total casino return in 100 games is 

denoted by , then the expected casino return in 100 games is $5.26 and P(T>28)=P(X>k), where 

 and k is the integer solution of the following dollar amount equation: k × $1 - (100-k) × 
$35 = $28, k=98. Therefore, P(T ≥ 28)=P(X ≥ 98)=0.508326. The last probability represents the exact solution and is computed 
using the SOCR Binomial Distribution applet (http://www.socr.ucla.edu/htmls/SOCR_Distributions.html). This exact calculation 
is numerically intractable for large sample-sizes (n>200), even though approximations exist. Again, one could use the CLT to find 
a very good approximation to this type of probabilities. For example, in the case above (n=100), we can estimate the probability of 
interest by 

 

Notice that this calculation is sample-size independent, and hence widely applicable, whereas the former exact probability 
calculation is limited for small n. What caused the large discrepancy between the exact and approximate values of the probability 
of interest: P(T ≥ 28)= 0.508326 and P(T ≥ 28) ≈ 0.347? This is an example where the usual rule of "30 measurements" breaks, 
because of the skewed underlying Binomial distribution. Such limitations of the CLT even for large sample-sizes have been 
previously observed and reported for severely skewed distributions (Freedman, Pisani, & Purves, 199). Here one would need much 
larger sample to get a reasonably good approximation using CLT. For example, if n=1,000 and we are looking for P(T>100), then 
k=975, the exact probability is P(T>100)=P(X>975)=0.4493287, and the CLT approximation is much closer: 
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Finally, we show how one can use the SOCR CLT applet alone to completely empirically estimate the probability of interest, P
(T>28), for n=100. Figure 8 demonstrates how one can manually construct the native probability mass function for the random 
variable Y (casino payoff of one roulette game). A simple linear transformation is needed to convert the values of Y to W 

, so that the range of the Y variable [-35 : 1] may be mapped to the default range of the CLT Applet native 
distribution [0 : 32], W. Now, recalling the definitions above (for the n=100 case) we have that 

, see Figure 8. The last equality is obtained by noticing that W will have 

approximately Normal (μ = 31.23332, σ2=0.488118952) distribution, with empirical mean and standard deviation obtained from 
row 3 in the table. 

 
 

Figure 8: Demonstration of an empirical estimation of the calculation of the roulette probability using the SOCR CLT 
applet alone (see text). 

3.3 What is unique about the SOCR CLT Activity? 

A key feature of the SOCR CLT activity is that it demonstrates the fact that, most of the time, the native process distribution is 
unknown to the user. If one assumes that a curtain hides away the native population, one may only observe samples randomly 
drawn from the unknown process. A good analogy of this is an experiment of observing shadows (samples) of an object (process 
of interest) projected under different light directions. One may want to answer questions about the object (e.g., its center) in terms 
of the observed shadow projections (e.g., sample-driven estimates of centrality). Then the CLT allows us to quantify how biased 
and dispersed are these sample-driven estimates of the object-specific parameter of interest (e.g., its center-of-mass). In the case 
that the question of interest is the object’s center-of-mass, the CLT implies that averaging the x- and y-coordinates of points in the 
2D shadow projections yields unbiased estimate of the object center-of-mass, and this estimate becomes tighter as the number of 
projections increase. 

There are two unique characteristics of the SOCR CLT applet and activity. The first one is the large number of families of 
distributions that are incorporated in the CLT applet. This feature may be used to clearly justify the quasi-independence of the 
CLT result from the distribution of the native process. The second distinct aspect of this activity is the broad spectrum in which the 
CLT can be demonstrated. An instructor may easily wrap his or her own interpretation of the CLT, tie it to their course curriculum 
within the SOCR Wiki framework and quickly make this available to their students and the community. For example, one 
instructor may want to stress the effects of the sample-sizes, whereas another may emphasize the properties of the chosen sample-
statistics. And still another may focus just on the random sampling, histogram plotting, counterexamples or sample-size reasoning, 
all within the same SOCR CLT applet-activity framework. 

3.4 Other SOCR Activities 

The SOCR resource has been continuously developing other similar hands-on activities. All of these activities are paired with one 
or more SOCR applets and typically illustrate one possible approach for demonstrating a probability or statistics concept via a 
SOCR distribution, experiment, analysis, graphing or modeling applet. Most general topics covered in lower and upper division 
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probability theory or statistical inference courses already have available SOCR Wiki activities 
(http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials). For example, there are two other SOCR CLT activities, which 
involve the Binomial and Gamma distributions. There are many other instances of SOCR activities covering the distributions, 
analyses, experiments, graphs and modeler applets. Finally, there are also some SOCR applets and activities, which may be used 
in more advanced undergraduate and graduate level classes, e.g., law of large numbers, mixture modeling, expectation 
maximization, Fourier and wavelet signal representation, etc. 
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