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Abstract

In the branch of probability called "large deviations," rates of convergence (e.g. of the sample mean) are
considered. The theory makes use of the moment generating function. So, particularly for sums of
independent and identically distributed random variables, the theory can be made accessible to senior
undergraduates after a first course in stochastic processes. This paper describes a directed independent
study in large deviations offered to a strong senior, providing a sample outline and discussion of
resources. Learning points are also highlighted.

Introduction

Imagine flipping a fair coin many times. We model the result of flip n with random variable X,, where “0'
and " 1' denote a head and a tail, respectively. For a fair coin P(X,,=0) = P(X,=1) = 0.5. We model the
collection of flips with the sequence {X,,, n =1,2,...} which is an independent and identically distributed

(i.1.d.) sequence with common mean E[X,,] =0.5. Let §,, = Zni:l X;, 80 S, counts the number of tails in

n flips. By the Strong Law of Large Numbers, with probability 1,S,/n — 0.5 as n — . In other
words, if the number of flips is large the proportion of tails will be about half.

For any n > 1, S,/n is a random variable too. Since S,,/n —> 0.5 as n — 0, for any a > 0.5,
P(S,,zna) > 0asn — oo,
An interesting question is how quickly does P(S,, = na) go to 0? For large n, S,/n significantly different

from 0.5 would be considered a "rare event". But what is "significant"? These and similar questions are
answered in the branch of probability called "large deviations," with applications to areas such as
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statistics, connection admission control in data networks, and the study of polymers.

While usually taught at the graduate level, aspects of the theory can be made accessible to senior
undergrads, particularly when the sequence {X ,,n =1,2,...} is i.i.d. The main prerequisite is previous

exposure to the moment generating function. This paper follows my supervision of a senior undergrad,
Rick (not his real name) in an independent study at the University of North Carolina Wilmington who
asked specifically for exposure to more sophisticated ideas of probability as he was bound for a
graduate statistics program. The remainder of this article gives an overview of large deviations and
available resources appropriate for senior undergrads with some previous exposure to real analysis (e.g.,
limsup, liminf, compact sets). Large deviations can become quite technical. (The books by den
Hollander (2000) and Dembo and Zeitouni (1998) are excellent references.) The goal here is not to
present those details, but rather to show a route through some basic ideas for undergrads that avoids
some of them, while presenting sufficient challenges.

The rest of this paper is organized as follows. The remainder of Section 1 discusses a number of
resources that are available in the area of large deviations. Section 2 provides more details and questions
on the coin tossing example. Section 3 discusses Cramér's theorem, and describes some of the
discussion points one could raise with an undergraduate. Section 4 discusses the project and how it
progressed. Section 5 gives some concluding remarks, while Section 6 provides the outline for the
project.

1.1 Resources

There are a number of references for large deviations and the quality and level of the exposition varies.
All four of the books listed here are texts, and include questions which can be assigned. Careful choices
must be made to keep the difficulty appropriate.

A general introduction to the topic for discrete random variables can be found in Section 9 of Billingsley
(1986). Generally the level of that book is at a more advanced level but this optional section is
something of an anomaly. Starting from the moment generating function it builds up to a version of an
important theorem, Chernoff's theorem, and gives an example in the context of statistical hypothesis
testing.

The text by den Hollander (2000) is split roughly 50-50 between theory and applications. Chapter 1 (8
pages) provides introductory theory for i.i.d. sequences. It is rigorous without excessive detail. It does
assume students know some basics about measures. For example, if X is a random variable with
cumulative distribution function F, so that F(x) = P(X < x), students are assumed to understand integrals
like ji{g(x )dF(x). This need not be a barrier to undergrads however. To make this notation accessible

there are a couple of possibilities. They can be told this is simply E[g(x)]. Or, you can stipulate an
assumption that X is (absolutely) continuous with density function f so that [ g(x)dF(x) = fg g(x)f(x)dx.

In this form the expected value is recognizable. Chapter 6 (4 pages) provides an accessible application to
statistical hypothesis testing with a nice statement of the statistical problem of interest and a quick
overview of Neyman-Pearson tests. Chernoff's theorem is used to find the exponential rate of decay of
error probabilities with increasing sample size n in optimal Neyman-Pearson tests.

The text by Bucklew (1990) is written at an upper graduate student level with applications to
information theory, communications theory or applied statistics. For undergraduates, the introduction
(Bucklew 1990, pp. 1-4) is accessible and provides motivation. Two examples on Chernoff's theorem
(Bucklew 1990, p. 35) are also accessible.

The text by Dembo & Zeitouni (1998) is a staple in large deviations. It is mathematical, thorough and
goes well beyond the i.i.d. setting. So, most of the coverage is too advanced for use here. Even the
notation could prove challenging. One section of the text, Section 2.2.1, deals with Cramér's Theorem in
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the i.i.d. setting. If a student is given a more accessible presentation beforehand, this section provides a
glimpse into a more sophisticated presentation of the material. It is expected they would have to read and
re-read the section, asking questions for clarification. To help decipher some notation, I told Rick that
foraset A

1 (A) = P(Sy € A)

where

n

Sn

is the empirical mean in that section.

Finally, I included two papers in the outline of the project. The paper by Weiss (1995) is a very
accessible introduction, written as an introduction for engineers. The paper by Chernoff (1952)
illustrates the use of large deviations to the analysis of statistical hypothesis testing. In the project,
reading Chernoff's paper is a choice. In fact, the texts above provide more accessible treatments to this
application. While Rick was initially keen to read it, when it was time to choose later in the semester, he
went with the text treatment.

2. Coin Tossing

The coin tossing example above leads to the following

Lemma 2.1 (See den Hollander (2000)). Let {X,,, n =1,2,...} be an i.i.d. sequence with P(X,, = 0)=
P(X,,=1)=0.5.Then for alla>0.5

limllog P(S, 2na)=-1(a)
n—o n

where

log2+xlogx+(1-x)log{l—-x) 0<x<1
I(x)=

otherwise.

A direct proof of this result is possible and makes a good exercise. The interesting case has 0.5 <a <1,
uses a counting argument, Stirling's approximation

ple~ne™ \ 2R

and the inequalities

2770 (@) < P(S, 2na)<(n+1)27"0 (a)

where
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Cn(a) = max [ﬁ]

(The maximum is attained at k = [nal A proof appears in den Hollander (2000, p. 5), but even that
proof is sufficiently terse that students are sufficiently challenged if asked to give full details. For
example, how does one correctly use the asymptotic result from Stirling's approximation? (It is not true

that
pl=n"e™ \ 2R

- the result is asymptotic.) Why are the inequalities in (3) true? How does one formally work with the

ceiling function in [nal (e.g., for the asymptotics of [nal asn ")?

3. Cramér's Theorem

The first fundamental result of large deviation theory is Cramér's Theorem, (also called Chernoff's
Theorem) and makes use of the moment generating function M(f) given by

M) = E[¢'X].

The Fenchel-Legendre transform is

I{x)=sup{t x — log A1/(#)}.
¢
Cramér's Theorem. Let{X,, n=1.2,..} be ani.i.d. sequence with E[X|] = Y and M (t) < = for all t.

Foralla> [

limllog P(S, zna)=-1(a).

n—=xo g

Proof. See den Hollander (2000, p. 5)

This theorem includes the coin tossing example, but is much more general. Calculating /(x) for common

distributions like Bernoulli(p), exponential()\), Poisson()\) and Normal(M, O 2) is a nice application of
finding absolute maximums. Students, such as Rick, can be good at finding critical numbers, but may
need reminding to justify they are absolute maximums.

Definition. If y;, y,,... is a sequence of numbers such that y,, —y as n — % , a function f is lower
semi-continuous if im inf,, s . f(y, )=f(y).

The function 7 has a number of properties, including 1) / is non-negative, 2) I is lower semi-continuous,
3) I(x) = 0 iff x = E(X;), and 4) I is convex. The level sets of I are the sets / L[0,a]) = {x: I (x) = a}.

Lower semi-continuous is equivalent to the level sets of I being closed. A proof of property (1) is trivial.
A proof for property (2) is a nice application of the following lemma.
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Fatou's Lemma. If {Y,, n = 1,2,...} is a sequence of non-negative valued random variables with finite
mean

E[liminf ¥,] < lim inf Z[7, ].

n—0 n—xn

(Note that non-negativity in Fatou's lemma doesn't mean we can only consider non-negative sequences
{X,,, n=1.2,..}. The connection between X, and Y, is more subtle.) This also provides a nice

opportunity to briefly introduce the limit theorems for integrals (monotone convergence, dominated
convergence) and place Fatou's lemma in context. For a sequence “Z,n=12,.} of continuous

random variables the statement E[lim Z, ] = lim E[Z, ]
nseo T nom "

isn't necessarily true. Similarly, for a sequence of functions {f,.1,2,...} where f,, = f as n — o it is not

necessarily true that !L’ﬂ,f F(x)dx :I F(x)dx.

These results are generally established with one of the "convergence theorems". These theorems have
stronger requirements on the sequence than Fatou's Lemma. In this sense Fatou's Lemma is a lesser
alternative- a weaker hypothesis, but providing a weaker result. It is used less often. But that weaker
result is still useful to prove property (2)! For this first exposure, these convergence results need not be
proven to the students. For a proof of property (3), Jensen's inequality is useful, which will probably
require a hint.

By the properties of /, it is not decreasing on (M, ). The result of Cramér's Theorem can be written
(den Hollander 2000. p. 10) as

limllog P[ls,, € A] =-I{a)=- ing I(x) where A€ [a,).
b2) XE

n—)oon

It may be surprising to see that the probability is obtained from the minimizing value x* in A which is

closest to M (i.e. the lower endpoint a). But this is the fundamental observation of large deviations: "rare
events happen in the least unlikely of the unlikely ways".

4. Teaching Large Deviations

Section 6 provides a syllabus with timetable for the project. It shows there were really three "phases" to
Rick's independent study. The times shown were the ones I originally scheduled for the project, and
worked well until the written report, which needed two additional weeks, but allowed some flexibility as
Rick's regular courses were winding down- some with final exams. The first phase of the project,
Section 6.4, about 8 weeks long, includes a number of readings, calculations and proofs. I asked Rick to
redo some solutions and proofs to achieve required precision (e.g., problems 1 and 4) which I think is a
good learning tool. Generally, I gave feedback on his submissions within a few days, but up to a week
was possible.

Through this phase Rick worked hard, perhaps harder than he was used to. Through the entire semester
we had a regularly-scheduled time each week when he would come by to ask questions, report progress
or submit solutions. But I was accessible at other times too, and he would use those times to ask
additional questions. This first phase generated the most questions from him, and led to the most
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face-to-face time. In some cases he asked my colleagues, whom he knew well, about supplemental texts
for foundational probability or real analysis. He was challenged, but I think he rose to the occasion.
Never did he appear discouraged.

The second phase, described in Section 6.5, was about 4 weeks long and involved computer simulation
work. It was intentionally designed to be not too onerous since learning the necessary computer skills
can take time. Rick chose to use R, with which he had some previous experience. Large deviation theory
gives an exponential decay rate. The point here was to use simulations to demonstrate that rate. This
required some mentoring, but far less involvement by me than in the other two phases. Since Rick had a
lot of training in statistics he was able to give both point estimates and confidence intervals for that rate.
Happily, all his confidence intervals covered the theoretical rate.

The final phase, Section 6.6, was the report. Rick's final report was 15 pages (double spaced) plus
appendices for computer code and data. He chose to use Microsoft Word to prepare the document. The
assignment is intentionally written to require some editorial decisions on what is worth including. It was
intended that Rick describe what he learned in a careful mathematical way. This turned out to be a
challenging phase, taking about three weeks and five drafts. To graduate Rick didn't need to write a
senior thesis. So, some of my comments were either about English writing in general or typical
comments for someone with little to no experience writing reports in mathematics. In some cases, I had
to prod him to include more of the work he had done. In addition, some teaching points from the first
phase were clearly not mastered, and the report was an opportunity to reinforce them. Stirling's
approximation is not an equality. Chernoff's theorem is an asymptotic result, not an inequality for every
n. There is a difference between the rate function for a zero threshold Neyman-Pearson test and the test
itself. I expected some points would not be mastered the first time around. This is one reason I assigned
a written report over an oral presentation- an oral presentation doesn't lend itself to revisiting points for
mastery. So the learning continued, basically right through until the last week.

With hindsight, I am reasonably happy with how phase 1 of the project developed. Finding the right
balance of giving hints versus having a student try again is challenging but important if the student is to
stay motivated. I tend to think Rick could have handled a bit more frustration from trying again.

I can see a few things I would do differently. To me, the written report is a valuable part of the
assignment. A nice advantage is that, as far as I know, cut-and-paste from web resources isn't really
possible. But it realistically requires 3-4 weeks for students with little writing experience, even with
quick feedback for each draft. That's to achieve a report that a student could proudly show to other
people. Reduced expectations might eliminate some iterations of the revisions process. To provide the
extra time, a week (maybe two) can be borrowed from the computer simulation time (phase 2) if a
student is using software they have used before.

For the report, Word is cumbersome because of the volume and complexity of math content. LaTeX
would be a natural choice, but the learning curve is too steep for student use with no previous
experience. Next time, [ would have a student try writing the report using "document mode" in the latest
versions of Maple- assuming some prior familiarity with Maple. This allows presentation-quality
documents to be prepared using a familiar Maple interface, syntax, symbol palettes and so-on.

The use of the Normal distribution in phase 2 was a deliberate choice, but ultimately it wasn't fully
exploited. In fact, the distribution of S, is known exactly and one can compare exact results for P(S,, >

na) versus n as n — % with large deviation asymptotic results and those obtained from the estimates.
Alternatively, one can use a non-Gaussian distribution where exact results are not known.

5. Conclusion

An independent study course in large deviations is not appropriate for every undergraduate in
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mathematics/statistics. But for the right student with the right background it's a nice way to build on
senior mathematics and provide a glimpse into advanced probability. Given the right student, I would
certainly try this again. If you're looking to challenge a student with theoretical material, large deviations
can make a nice project.

6. Outline for "Large Deviations for 1.I.D. Data with
Applications to Hypothesis Testing"

6.1 Overview

Suppose {X;, X5, ...} is an i.i.d. sequence with mean M and S, = Zni:l X,.Then S,/n —> M asn —> «
by the Strong Law of Large Numbers. So, ifa > H, P(S, = na) = P(S,/n = a) must go to zero as n —

. In many cases, P(S,, = na) is distributed as e K" where K is a rate that can be found. Such cases are

interesting in hypothesis testing in statistics, for example. Numerous other applications exist where
independence is weakened (e.g. to Markov chains).

References-Books

Patrick Billingsley, Probability and Measure, 2nd ed., 1986. (pp. 142-149)

James A. Bucklew, Large Deviation Techniques in Decision, Simulation, and Estimation, 1990. (pp.
1-14,91-93)

Amir Dembo, Ofer Zeitouni, Large Deviations Techniques and Applications, 1998. (Sections 2.2.1,
3.4) (more advanced reading)

Frank den Hollander, Large Deviations, 2000. (Chapters 1,6- a total of 15 pages)

References-Papers

H. Chernoff. "A measure of the asymptotic efficiency of tests of a hypothesis based on the sum of
observations." Annals of Mathematical Statistics,?23:493--507, 1952.

Alan Weiss, "An Introduction to Large Deviations for Communication Networks",/EEE Journal on
Selected Areas in Communications, vol. 13, no. 6, August 1995 pp. 938--952. (Sections 1-5)

6.4 Weeks 1-8 - Exercises
6.4.1 Introduction

Read Bucklew pp. 1-4.

6.4.2 Week 1 - Coin Tossing

Read Weiss Section 1I.

1. Suppose {X;.X,.,...} is an i.i.d. sequence with P(X; =0) = P(X; = 1) = 0.5 so the E(X;) =0.5. Let
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S, = z”i:l X;. Use Stirling's approximation to n! and the Binomial Theorem to show for 0.5 <x <
1

lim llog P(S, 2nx)=-1(x)

»—>C0Fl

where

log2+xlogx+(1-x)log{l—x) 0<x<1
I{x)=

otherwise.

6.4.3 Weeks 2-3 - Chernoff's Theorem (Cramér's Theorem)

Read Billingsley pp. 142-148, Weiss III-IVc.

2. Compute the rate function (i.e. the Fenchel-Legendre transform) for these distributions. a)
Bernoulli(p), b) exponential()\), c) Poisson(10) and d) N(M, O 2.

3. Use a computer package to plot the rate functions for these distributions. a) Bernoulli(0.5), b)
exponential(10), ¢) Poisson(10) and d) N(5,1)

4. Billingsley (Chapter 1,9.2)

Let Y be a random variable with moment generating function M(z). Show that P(Y > 0) = 0 implies that
P(Y = 0) = inf,M(z). Is the infimum achieved in this case?

6.4.4 Weeks 4-5 - Large Deviation Principle

Read Weiss IVd-V, Dembo & Zeitouni p.26 & Section 2.2.1

5. a) State the Large Deviations Principle with rate function I( * ) in the Cramér setting, in terms of
closed sets F and open sets G.

b) State the Large Deviations Principle with rate function /( * ) in the Cramér setting for a set
[a,»). (Hint: use Corollary 2.2.19).

6. The Fenchel-Legendre transform is /(x) = supg| Ox - log M(0)], where M(8) is the moment
generating function.

a) Show I(x) is non-negative.
b) A probabilistic interpretation of Fatou's lemma states that if {X;.,X5,...} is a sequence of

identically distributed non-negative random variables with finite mean

E[liminf X, ] < liminf E[.X,].

n—xn n—0

Use Fatou's lemma to show I(x) is lower semi-continuous.
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6.4.5 Week 6 - Application to Hypothesis Testing I

Read Billingsley pp. 148-149.
7. Verify equation 9.24 in Billingsley.

8. Consider the test following equation 9.27 in Billingsley. Imagine trying to distinguish betweenp,
=0.2 and p, =0.2 + ¢ and also between p; =0.5 and p, = 0.5 + 7. Approximately, by what

fraction can the sample size be smaller in the first case to achieve the same precision as in the
second case.

6.4.6 Weeks 7-8 - Application to Hypothesis Testing 11

9.
Read den Hollander (Chapter 6) and complete den Hollander exercise VI.6.
OR

9. Read Chernoff (1952) and express in your own words the conclusion of Theorem 3.

6.5 Weeks 9-12 - Computer Simulation (e.g. R, S-plus or Matlab)

For this part you'll work with the N(5,1) distribution.

1. Suppose {X;, X5, ...,; are i.i.d. random variables with a N(5,1) distribution, and X,, = Z”,-=1 X;.
For any a > 5 what does Chernoff's theorem say about P(S,, = na).

2. Using random number simulation, demonstrate the exponential decay and asymptotic rate
described in Chernoff's theorem. That is, use simulations to approximate P(S,, = na) and then plot

it versus n for values of a > 5 using appropriate axes. That is, you should create a different graph
for each value of a.

6.6 Weeks 13-14 - Report

Summarize the results of the exercises and computer simulation in a typed report of 8-10 pages.
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