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Abstract

It is shown how student participation in a real consulting project can be leveraged to achieve the dual
goals of (i) developing statistical consulting skills in graduate students, and (ii) enhancing the
instructional effectiveness of statistical methodology. Achieving these goals is the primary mission of the
Statistical Consulting Collaboratory at the University of California, Riverside. The paper gives a detailed
illustration of the how the goals were achieved by reporting on an interesting case study, with special
emphasis given to describing the involvement of students and the alternative ways in which the project
found its way into classrooms.

1. Introduction

The Department of Statistics at the University of California at Riverside formally established a Statistical
Consulting Collaboratory in the Fall of 2003. Agreeing with Carter, Scheaffer and Marks (1986), the first
priority of the Collaboratory is to contribute effectively to the academic objectives of the Statistics
Department. The Collaboratory is uniquely positioned to do this through the development and application
of statistical methods to real world problems. Specific contributions the Collaboratory is making include:
1) curriculum material for the department’s graduate-level statistical consulting class that addresses
traditional pedagogical objectives [see, for example, Hertzberg, Clark and Brogan (2000), Taplin (2003),
Johnson and Warner (2004), and Birch and Morgan (2005)], 2) curriculum material that both reinforces
and broadens student knowledge in statistical methodology, 3) consulting opportunities for undergraduate
and graduate students, 4) research opportunities that can develop into PhD dissertation topics, and 5)
resume building activities for students through publication opportunities and industry internships made
available through the Collaboratory client network.
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The importance of skills on the non-technical side of consulting has been discussed elsewhere [see, for
example, Boen and Zahn (1982), Kirk (1991), Derr (2000)]. While these skills are essential, an equally
(arguably more) important skill is broad technical expertise that enables choosing a correct analysis on the
basis of informed judgments. A distinguishing characteristic of the Collaboratory is its ability to promote
a statistical consulting pedagogy that goes beyond pragmatic solutions to consulting problems by
exploring additional statistical methodology that is related to the client problem. Through this influence,
the Collaboratory enhances the students’ ability to select appropriate methodology for a given problem.
Moreover, it cultivates a curiosity and a self-sufficiency, which are attributes Russell (2001) discusses as
crucial for a statistical consultant. In this paper, a case study is described that illustrates how the
Collaboratory achieves these objectives. While case studies on statistical consulting have appeared in
other work [see, for example, Tweedie (1998) and Cabrera and McDougall (2002)], our case study is
different in that it specifically highlights how the Collaboratory influenced curriculum for the statistical
consulting class. For example, references are given throughout to exercises included in Appendix A that
were used as class assignments. The exercises by themselves are interesting and could be used as a
supplement for a variety of statistics classes.

In the remainder of this Section, a more detailed overview about the mission of the Collaboratory is
provided, and the specific consulting problem is introduced. In Sections 2-4, the major tasks associated
with the consulting problem are discussed and the opportunities they provided to enhance graduate
student training are highlighted. Within each of these sections, the statistical methods used to solve the
consulting problem are first introduced and then accounts of the educational benefits generated by the
consulting problem are detailed. The paper concludes with discussion in Section 5.

1.1 Statistical Consulting Collaboratory

Clients of the Statistical Consulting Collaboratory include professors, graduate students and University
administrators. Clients to-date have been affiliated both with UC-Riverside and also other local
Universities. In addition, the Collaboratory attracts industry clients through both personal networking and
referrals. In the framework of Does and Zempleni (2001), the Collaboratory is a hybridization of a
noncommercial and commercial consulting unit, though to-date the Collaboratory does not aggressively
market itself to off-campus clients. The Collaboratory is directed by a tenured faculty member and
employs a full-time Associate Director with an M.S. degree in Statistics. While the Director position is
ultimately responsible for all of the activities of the Collaboratory, his/her primary emphasis is to create
and nurture opportunities within the Collaboratory that make it look and operate like an academic unit.
The primary role of the Associate Director is to lend his/her technical consulting skills to projects, but
other significant responsibilities include supervising Collaboratory Research Assistants (CRAS) and
managing some administrative aspects of the Collaboratory. The Collaboratory has typically supported 2-
3 CRAs during the academic year with partial research assistantships. During the summer months a
larger number of opportunities for part-time employment are available. While the majority of the CRAs
are graduate students in Statistics, undergraduate students from both Statistics and other departments
(e.g., Computer Science, Business and Mathematics) within the University have made contributions to
some of the industry client projects along the lines of data base construction and development of
customized data processing routines. The Director and Associate Director hire CRASs based on the level
of their experience with applied statistics and/or computer skills, their demonstrated work ethic, and their
interest for gaining experience with statistical consulting.

Projects that are taken on by the Collaboratory loosely fall into two categories: Service or Collaboration.
Service describes projects that utilize standard statistical methods, both well-known and less well-known
to the clients. Collaboration describes projects where there is some aspect of novelty either in the
development or application of statistical methodology. To fund the support that is provided to students



working in the Collaboratory, fees are assessed for service projects. While the University provides the
salary and benefits for the Associate Director, the fees are also intended to cover miscellaneous expenses
such as software licenses and office supplies. Some projects start out as service but evolve into
collaboration. When the transition to collaboration occurs and it is reasonable to expect the research
could eventually be published in a Statistics journal, fees no longer apply. In the best collaborative
relationships, a joint grant proposal would also be submitted.

The Statistics Department at UC-Riverside has a mandatory three quarter class on Statistical Consulting
for both MS and PhD graduate students. The Consulting Class (CC) is taught by the Collaboratory
Director and usually has 10-15 graduate students enrolled who are at least in the second year of their
program. A great majority of the material covered in the CC is related to Collaboratory projects. Client
visitations provide opportunities for the students to gain experience listening to clients and eliciting
information that helps formulate objectives for the projects. Students are assigned to work on consulting
projects independently and also in small groups. Lectures provide the students the necessary background
they need to complete tasks associated with the projects. Throughout the duration of their work on the
projects, students schedule meetings with the Director and/or Associate Director for additional direction
and advice. Typically, students will have at least one interim meeting with the client before delivering a
final presentation to them. The Director formulates homework exercises relating to each of the projects
being addressed in the class. Appendix A contains the exercises that were extracted from the project
being presented in this case study. The CC is a letter grade class, and includes a final exam that covers
the statistical methodology relating to the consulting projects that were discussed during the quarter.

1.2 Consulting Problem

In order to respect proprietary issues, the client in this case study is referred to as Organization X.
Organization X was an off-campus client that had t competing plans for a product’s architecture, which

in this paper will be indexed by the integer values 1 to t. With t alternative plans, there are C, pairs of
plans and a panel of independent judges was enlisted to evaluate each pair of plans. Individual judges
could only serve on one panel, a logistics constraint that arose due to the fact judges were animals. Let
n; denote the number of judges in the panel that compare the (i, ) pair of plans.

Each judge within a panel was able to express a preference as to which of the two plans is preferable.
Prior to meeting with the Collaboratory, the data were analyzed by Organization X to construct
approximate confidence intervals for the probabilities that a given plan is preferable to another plan. Let

7y denote the probability that plan i is preferred over plan j when a judge compares the two plans.
Assuming that the judges within a panel are a random sample from the targeted population for the
product, the number of expressed preferences for plan i when it is compared with plan j, say S , follows
a binomial distribution with trial parameter n; and success probability ;. The {Sij}}< ; observations

from an Organization X experiment with t =5 are shown in Table 1. (The numbers enclosed by
parentheses in Table 1 represent expected cell frequencies and will be discussed in Section 3.1.) The
intent was to use 30 judges for each panel. However, only 29 judges participated in the (1,2), (3,4)

and (3,5) panels. Approximate confidence intervals for {z; Y. ; were constructed by the client from the
formula 7, + z,,\7;(1-7;)/n, , where 7, =S, /n; [see, for example, Mendenhall, Beaver and
Beaver (2006)].



Plan j
Plani 1 2 3 4 5
1 - 20 (23.4) 22 (20.3) 20 (16.6) 1(2.7)
2 9 (5.6) - 6 (9.9) 7 (6.8) 1(0.7)
3 8 (9.8) 24 (20.0) - 8 (10.8) 2 (1.3)
4 10 (13.4) 23 (23.2) 21 (18.7) - 3(2.2)
5 29 (27.2) 29 (29.3) 27 (27.7) 27 (27.8) -

Table 1. Observed and Estimated Expected Cell Frequencies for Organization X Experiment

While Table 1 is the only data set provided to the Collaboratory by Organization X, they in fact do many
experiments of the same type. The main goal of Organization X was to learn about the most appropriate
type of analyses for data sets of this kind so that they could perform future analyses themselves.
Organization X expressed specific interest in using the data to rank order the plans and to identify which
plans were the “best” in a statistically significant way. Clearly, the confidence intervals they computed
stop short of a formal ranking procedure. Organization X also expressed an interest in exploring the
quality of their experimental design. In particular, they wanted to know if an alternative design could be
employed that utilized fewer panels yet still provided enough information to adequately compare the
alternative plans. A design that utilizes fewer panels would be attractive from the standpoint that it would
be simpler to manage. The client noted that any proposed alternative design needed to adhere to the
constraint that no judge could be asked to compare more than two plans.

1.3 Proposal Process

Organization X requested a proposal from the Collaboratory that outlined tasks and deliverables
associated with their stated goals. During the winter quarter of 2005, the objectives of the consulting
problem were introduced to a CC, along with the existing mode of data analysis being carried out by
Organization X. The students were first asked to participate in a brainstorm discussion about what could
be done for this client. To guide the discussion and provide some relevant technical background, a
detailed introduction to the Bradley-Terry (1952) model for analyzing a paired comparison experiment
was provided to the students. The students were then asked on a homework assignment to individually
write a summary of this discussion and identify open issues concerning the proposed analysis techniques.

The Director then led a class discussion on basic proposal writing concepts and workload estimation
techniques and used the submitted homework assignments to develop a draft of the proposal. Although
the Director ultimately wrote the proposal, the students were able to observe firsthand what this activity
involves. For most of the students, it was their first exposure to the challenge of setting a realistic project
schedule that includes milestones and estimated costs. The students also observed the importance of
performing background technical work (i.e., acquiring fundamental knowledge about Bradley-Terry
models) that can help make a proposal more compelling to a client.

After the proposal was submitted to Organization X, an iterative feedback loop with the client began and
the CC was kept abreast of the proposal progress. In one instance, the client requested customized
software that would automate the proposed analysis methods to the extent they could import their data
into one computer program and get every aspect of their analysis as the output. In a sense, the request
was for an expert system, which was more than the Director wanted to commit to. As an alternative, it
was suggested to the client that the analyses be done with off-the-shelf statistical software packages such
as R or SAS, but not necessarily with one program and not necessarily without some human oversight.
The students observed this decision-making process, and were also exposed to some of the important
issues that arose during the proposal negotiating process. For example, they saw that it is acceptable, and
even necessary, to declare some requests beyond the scope of the project. Furthermore, they gained a



better appreciation for why a proposal must contain well organized, clearly defined tasks and how to
avoid the pitfall of being too vague or overextending when writing the scope-of-work.

The final proposal was ultimately approved by the client in late Spring, 2005. The remaining project
work described in this paper began in the late summer of 2005 when a CRA began working on the
estimation analyses.

2. Estimation
2.1 Consulting Application

Because ranking the plans based on evaluations from judges is of interest, it is natural to think of the
Bradley-Terry (1952) modeling framework. As discussed in the previous section, the design used by

Organization X is not the classic case where each judge evaluates every one of the C, pairs of plans.
Nevertheless, the key idea associated with the Bradley-Terry model can be used in conjunction with a
logistic regression model for the independent observations {Sij}}< ;- [Readers wanting a refresher on
logistic regression are referred to Dobson (2002) or Agresti (2002).] In particular, suppose the plans have
true (fixed and unobservable) merits {¢;};_, and suppose the following link function is assumed for Ty

Iog( 7 ] - - a . )

1—7zij

It follows from equation (1) that 7; = exp(e; — aj)/[1+ exp(e; — aj)] so that if the i-th and j-th plans
have the same merit then 7z; = 0.5, and otherwise larger «; — a; contrasts imply larger z; values. Itis

also clear that it is not the values of {&;}_, that are important, but only their relative differences o, — ;.

In fact, only the differences «; — «; are identifiable in this model. The link function (1) may look a little
T

peculiar for logistic regression contexts, but looks more familiar when written as log {—”] = Xa,
_7[']

where ¢ = (o, @, ,...«)" and X; is the tx1 vector with +1 in the i-th position and -1 in the j-th

position.

It follows that the likelihood function for {7rij}}<j based on the {Sij}t is

i<j
tot . n-S;
L7y, s 75 0en 7)€ _1_{_1_[_”5” (1_”"‘) ; (2)
i=li<j
where constants of proportionality have been neglected. Using equation (1), an equivalent representation
of the likelihood in terms of {}i, is
t ot eaisijeaj(nij =Si)

L(al,az,...at)ocnﬂﬁ . (3)
i=1 i<j (e i+e ’) K
Since only the differences «; — «; are identifiable, an identifiability constraint is required when seeking

the maximizing values {&};_, from equation (3). The constraint &, =0 is used by the R package, &, =0



is used by SAS and Y& =1 is used in some of the Bradley-Terry model literature. Strauss (1992)
discusses how standard logistic regression software packages can be used to compute {&}_, .

t

Once the {&};_, have been obtained, maximum likelihood (ML) estimates of {7;}.,; are obtained as

7y = exp(a; — &j)/[1+ exp(a; — &j)] . The scores used for ranking the alternative plans are {<.};_, ,

where k, = (i 7;)I(t-1) . The ranking scores are ML estimates of the average preference probability of

j#i

each plan when it is pair-wise compared to the other t—1 plans.

The R code provided in Appendix B was used with the data {Sij}f<j shown in Table 1 to arrive at the

{a,}, values for the client data set. Table 2 shows these values along with the estimated ranking scores
{x.}, that are derived from the estimated pair-wise preference probabilities {7; ¥, ; thatare shown in

Table 3. The values {«,}, are simply the row means of Table 3. A preliminary conclusion, based on the
ranking scores, is that it appears Plan 5 is the most favored and that Plan 2 is the least favored.

Plan a, K, Ranking
1 0 0.53 2
2 -1.437 0.19 5
3 -0.731 0.36 4
4 -0.213 0.48 3
5 2.302 0.94 1

Table 2. Ranking Analysis of Alternative Plans

Plan j
Plani 1 2 3 4 5
1 - 0.81 0.67 0.55 0.09
2 0.19 - 0.33 0.23 0.02
3 0.33 0.67 - 0.37 0.05
4 0.45 0.77 0.63 - 0.07
5 0.91 0.98 0.95 0.93 -

Table 3. Estimated Pair-wise Preference Probabilities 7

2.2 Educational Opportunities

The client expressed a preference for using R since it is freeware, and through internet searching the CRA
identified the R function BTm (Appendix B) to facilitate the ranking analysis shown in Table 2.
Understanding how to use BTm in connection with the notation and parameterization presented in
Bradley and Terry (1952) was not a trivial task, and provided the CRA with an appreciation for how to
link theory to packaged statistical software.



By this time the 2005 fall quarter had begun and a new CC was available to participate in the work. The
CRA prepared a draft of slides that summarized the ML analysis and, in preparation for a client meeting,
presented them to the CC for peer review. Through this experience, the both the CRA and CC learned the
importance of practicing presentations while preparing for a client meeting. In particular, the students
learned how to assemble material that would answer client questions and also teach the client about
statistical methods relevant to their problem. Especially in academic consulting environments, teaching
is a strong element of the client-consultant relationship.

The students in the CC were asked to write their own Newton-Raphson algorithm in R to verify the ML
analysis carried out by the CRA. The primary purposes of this assignment were to have the students
confront the issue that only the differences ¢, —a; are identifiable in the model, and to show them more

clearly the necessity of a constraint such as &, =0 on the solution to the likelihood equations. In

addition, the assignment reviewed a fundamental numerical optimization technique, and asked the
students to think through the details of implementing the technique in a programming language. For a
few students, this was their first experience with practical details of implementing an optimization
technique. The assignment also asked the students to check and compare the computational results across
two software packages (R and SAS).

The literature associated with the Bradley-Terry model frequently expresses the likelihood shown in
equation (3) in terms of quantities {r; }, wherer, is the rank (1 or 2, with 1 corresponding to

“preferred”) of the i-th plan when compared to the j-th plan by the k-th judge. Exercise 1 in Appendix A
was used to guide the student through a translation that connects equation (3) to the classic notation used
for the Bradley-Terry model.

3. Hypothesis Testing
3.1 Consulting Application

The logistic regression model that uses the Bradley-Terry link function is a reduction of a saturated model
that has a separate binomial parameter for each of the C, panels. The likelihood function for the
saturated model would simply be equation (2) without the assumed link function given by equation (1).
The ML estimates of the saturated model are easily seen to be 7; =S, /n;. A goodness-of-fit test [see,
for example, Dobson (2002) or Agresti (2002)] can be made using the statistic

X? = —2Iog[L({;%ij}}<j)/ L({ﬁij}}q)] . Under the null hypothesis that the logistic regression model with

the Bradley-Terry link function is an adequate reduced model, X? follows a chi-square distribution with
v=(t-1)(t—2)/2 degrees of freedom. For the Organization X data, it can be shown that

log L({7;}.;) =-133.84 and log L({#,}.;) =—128.65 and therefore X*=10.39. With t =5 the null
degrees of freedom for the chi-square distribution are v =6, and hence the p-value for model adequacy is
0.11, suggesting the reduced model offers an adequate fit.

A visual way to illustrate the adequacy of the reduced model is to compare the observed and expected cell
frequencies corresponding to Table 1. The numbers in Table 1 that are in parentheses are the expected
cell frequencies n;7z; according to the fitted model, and the model adequacy is again reflected by the

closeness of the observed and expected cell frequencies.



The {x};, scores (shown in Table 2) provide a ranking of the alternative plans, but do not by themselves
give an indication as to which of the differences «; —«; are non-zero. Holm’s (1979) sequential

Bonferroni (SB) procedure was used to determine which of the estimated differences, &, —«; , are

significantly different from zero in a statistical sense. Table 4 shows the ML estimates of each contrast,
their asymptotic standard errors, the z-scores for the hypotheses H,(i, j) , and the corresponding

unadjusted and SB adjusted p-values. Significance levels of 5% (*) and 1% (**) are also indicated in the
table.

Unadjusted Sequential Bonferroni
Contrast | ML Est. | Std. Error | z-score p-value Adjusted p-value
a,—a, 1.437 0.294 4.88 1.06%x10°° 6.39x10°% **
a —a, 0.731 0.269 2.71 6.77 x10°3 271x1072% *
a,—a, 0.213 0.264 0.81 4.20x107 420107t
o, —a; -2.302 0.416 5.53 3.12x10°® 218x107 **
a, —a, -0.706 0.280 2.52 1.18 %1072 3.53x102 =*
a,—a, -1.223 0.288 4.24 2.19%x107° 1.10x10™% **
a, — O -3.739 0.450 8.31 9.62x107Y 0.62x10716 **
a,—a, -0.517 0.267 1.94 5.25%x1072 1.05%x107"
o, — s -3.033 0.431 7.03 207x1072 | 1.86x1071 **
a, —a; -2.516 0.420 5.98 217x107° 1.74x10°8 **

Table 4. Sequential Bonferroni Multiple Comparison Procedure

It can be seen from Table 4 that the only contrasts that are not significantly different at the 5% level are
a,—a, and a, —a, . Figure 1 shows the grouping of the plans based on the 5% significance level, with

the usual interpretation that plans that are connected by a line are not significantly different.

Plan 5 Plan 1 Plan 4 Plan 3 Plan 2

Figure 1. Multiple Comparison Groupings of Plans (5% Significance Level)

3.2 Educational Opportunities

A detailed discussion of the goodness-of-fit test for generalized linear models, with particular emphasis
on how it applies to the consulting problem, was provided in the CC. Exercise 2 in Appendix A was
assigned to the students to ensure they understand how to compute the degrees of freedom associated with
the null distribution of X* and interpret the results. The time spent discussing the goodness-of-fit test set
a good example for the students of how consultants need to pay attention to the adequacy of models
presented to their clients, as they are typically the only ones in a position to make such evaluations.

The sequential Bonferroni procedure was not the first method considered for doing the multiple
comparison test of the pair-wise contrasts. Instead, an alternative method was developed in the CC based



on the fact that under the null hypothesis H,: o, =... =, the {S;};_; are independently distributed
0.5) . Hence, the null distribution of Q = Max | ¢, -« |

binomial random variables with parameters (n;, Ma
<i<j<t

can be determined to an arbitrary precision via Monte Carlo simulation as it depends only on the sample

sizes {nij}}<j . Two plans would be declared different if and only if ‘&i —o?j ‘ >(,, where g, denotes the

upper «a —percentile of the null distribution of Q. Students in the CC were asked to develop a simulation

algorithm to verify that for the client data set ¢, [! 0.651. The motivation for this exercise was to

reinforce the role and usefulness of simulation studies when solving applied problems.

The multiple comparison procedure based upon Q has the property that the probability of at least one
false positive under H,: o, =...=¢, is exactly .05, and as such would seem to offer something stronger
than other conservative procedures. However, it turns out that while this method exhibits weak control of
the Type-1 family-wise error rate, it does not exhibit strong control. The distinction between weak and
strong control for a multiple comparison procedure [see, for example, Westfall and Young (1993),
Romano and Wolf (2005)] is very important, but is not well known. The consulting problem provided a
natural context to expose the concept in a lucid and accessible manner. Exercise 3 in Appendix A guided
the students through this learning process.

4. Experimental Design Comparison
4.1 Consulting Application

The experimental design used by Organization X was balanced in the sense that all 10 pairs of plans were
evaluated by a panel of judges. Organization X expressed an interest in knowing if there was a viable
alternative to running a panel for each of the pairs of plans, while at the same time still being able to rank
the plans and assess significance. The CRA suggested an alternative “cyclic” design that employs only
four panels comparing the following plan pairs: (1,2), (2,3), (3,4) and (4,5) . Within the environment
of Organization X, the cyclic design would be significantly simpler to manage. If the Bradley-Terry link
function is assumed to hold for all 10 pairs of plans, then all the contrasts ¢ —«; (i # j) remain

estimable with the cyclic design.

One way to compare the balanced and cyclic designs is to evaluate and compare the power of the
likelihood ratio test statistic of H,: a;, =--- = o, under each design. For the balanced design, the full
) ) ) 5 5 eaisij eaj(nijfsij)
likelihood is Ly(e, , @, ,...a5) < [1[] ————
i=Li<j (&% 4+e™)"

Ly, ay,...0p)

e% S12 e% Ny —Spp e Sa3 g% Ny3—Sz3
e +e% e +e™ e” +e™ e +e%
. % S3 o% N34 =Sgy e% Sas e% N5 —Sas
e” +e% e +e% g™ +e% e +e%

The likelihood ratio test (LRT) statistics under the balanced and cyclic designs are
Ag=-2 Iog[LB (0)/ Max Lg (&)} and A, =-2 Iog[LC (0)/ Max L (0?)} , respectively, where
aec® ae®

. For the cyclic design, the full likelihood is




0=(0,0,0,0,0)" and ® ={&: @, =0}. In both cases, the null distribution of the LRT is approximately
chi-square with 4 degrees of freedom.

Power for the balanced design was computed for the case where each of the 10 panels had 30 judges (the
approximate panel sizes utilized by Organization X) and the power of the cyclic design was computed for
the case where the 4 panels each had 75 judges (i.e., 300 judges for both designs). For a given alternative
(e, ..., ), power for the balanced design was computed by: 1) simulating 1000 data sets consisting of

5

observations {S;},_; that are independent binomial distributions that have trial parameter equal to 30 and

success parameters equal to exp(e; —a;) /[1+exp(e; —«;)], and 2) computing the fraction of the data sets

for which A is greater than y7,.. For the same alternatives, power for the cyclic design was

computed by: 1) simulating 1000 data sets consisting of observations (S, , S,; , S, , S,5) that are
independent binomial distributions that have trial parameter equal to 75 and respective success parameters
equal to exp(e, —a,) I[1+exp(a, —a,)], exp(a, —a;) [[1+exp(a, —a,)], exp(a; —a,) [[1+exp(a, —,)]
and exp(e, —a;) I[1+exp(e, —a;)], and 2) computing the fraction of the data sets for which A is
greater than y; ..

Results of the power simulations are shown in Table 5 for 14 different alternatives (¢, ,..., o). It can be

seen that for 12 of the alternatives considered, the balanced design has considerably more power than the
cyclic design. For these 12 alternatives, the loss of information by using fewer panels is not compensated
for by using more judges in each panel. For alternatives (1,1.5,1,1,1) and (1,1.5,1,1.5,1) (rows 8

and 9) the cyclic design has higher power. Higher power for the cyclic design in these two cases occurs
because a higher proportion of the non-zero contrasts are cyclic and hence the larger panel sizes are able
to wield a bigger impact. In the latter alternative, for example, four of the six non-zero contrasts are
cyclic. Unfortunately for the cyclic design, its advantage for specific alternatives cannot be exploited in
the absence of a-priori information about (¢, , ..., o) .

Alternative Power

() ,..., ) Balanced Design Cyclic Design
1.0,1.0,1.0,1.0,1.0) .06 .05
1.0,1.0,1.0,1.0,1.2) A1 .08
(1.0,1.0,1.0,1.2,1.2) .18 .10
(1.0,1.0,1.2,1.2,1.2) .18 .078
(2.0,1.0,1.0,1.0,1.5) 54 .38
1.0,1.0,1.0,15,15) 74 .34
(2.0,1.0,1.5,1.5,1.5) .78 .38
(1.0,15,1.0,1.0,1.0) .54 .65
(1.0,15,1.0,1.5,1.0) .75 .95
1.0,1.0,1.0,1.0,1.8) .95 17
1.0,1.0,1.0,1.8,1.8) .99 75
(2.0,1.0,1.8,1.8,1.8) .99 .80
(2.0,1.2,1.2,1.2,1.2) 12 074
(1.0,15,15,15,15) .55 37

Table 5. Monte-Carlo Power of Balanced and Cyclic Designs for Various Alternatives
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The precision of contrast estimates can also be used to assess the sensitivity of competing designs. For
=(1,1,1,1,1), the standard errors of all 10 pair-wise contrasts ¢ —a; (i < j <5) were estimated

under both the balanced and cyclic designs using an additional simulation study. Table 6 shows estimated
standard errors from 1000 simulated data sets. As might be expected, in the balanced design all contrasts
exhibit the same standard error while the same is not true for the cyclic design. In the cyclic design, the
standard error of a contrast depends on how many panels have to be utilized in order to estimate the
contrast. For example, contrasts comparing the plans (1,2), (2,3), (3,4) or (4,5) are estimated with the
highest precision since these contrasts are directly estimable from the panels that were run. Contrasts
comparing (1,3), (2,4) and (3,5) have less precision because they require utilizing two of the panels that
were run. For example, the contrast estimate ¢, —, can be viewed as (¢, —a,) + (@, —a;) , where the

two terms come from panels that were actually run in the cyclic design. Similarly, contrasts comparing
(1,4) and (2,5) require utilizing three of the panels that were run and the contrast comparing (1,5) requires
utilizing all four of the panels that were run. The fact that the cyclic design does not estimate all contrasts
equally complicates how a practitioner would go about assigning labels to the plans.

Estimated Standard Errors
Contrast Balanced Design Cyclic Design
a, —a, .23 .24
a —a, .23 .33
a -a, .24 A2
a, — o .24 A48
a,—a, .23 24
a,—a, .23 .34
a, —a; .24 A1
a,—a, .24 24
o, —a; 24 .33
a, —ao; .24 .24

Table 6. Monte-Carlo Standard Error Estimates for the Pair-Wise
Contrasts under the Alternative (1.0,1.0,1.0,1.0,1.0)

4.2 Educational Opportunities

A particularly nice aspect of this case study is that the client was interested in receiving advice on how to
design future experiments. This was ideal for demonstrating to the CC that statistical consulting involves
not only data analysis, but also experimental design as well. The cyclic design is a minimal design in the
sense there is no design with fewer panels that can still estimate all 10 pair-wise contrasts. Exercise 4 in
Appendix A asks the student to derive the ML estimates for all of the contrasts under the cyclic design
(closed form expressions exist). The student is also asked to examine the consequences of the minimal
nature of the design with respect to the goodness-of-fit of the Bradley-Terry link function.

Power and precision were introduced as criteria to compare the balanced and cyclic designs, and it was

pointed out how a fair comparison between the two should have the same number of judges utilized for
each case. The Director proposed the set of alternatives with consideration to their implied values for the

11



{7; Y. ;- Students in the CC conducted the power comparison by individually taking one of the

alternatives (¢, ,..., @) and developing their own R program to obtain Monte Carlo estimates of the

power for each design. The experience the students gained while working on the power study further
reinforced their programming and simulation skills.

The CRA’s presentation at a client meeting comparing the balanced and cyclic designs was very well
received. In fact, the client ranked it as one of the most insightful aspects of the entire project, as it
guantitatively justified the balanced design. Additionally, the power and precision metrics were shown to
be a useful way to compare alternative designs if and when balanced designs become uneconomical (e.g.,

when t is large enough to make C; unmanageable).

5. Discussion
5.1 Triangulation Analyses

The role of triangulation analyses (i.e., using two or more methods to verify results) in statistical
consulting cannot be emphasized enough. The case study provided an opportunity to show the CC how to
be creative in checking the validity of statistical analyses. In particular, a linear model approximation was
developed in order to cross-check the ML analysis results, as well as the simulated power and precision
estimates. The linear model approximation facilitates a nice link between the consulting problem and
statistical methods that students should be very familiar with, and as such opened the door for a number
of interesting homework assignments (see Exercises 5-8 in Appendix A).

5.2 Project Management Skills

Throughout the the project, the CRA was responsible for preparing slide presentations that were shared
with the client at multiple client meetings. While the Director and/or Associate Director were always
present at client meetings, the CRA gave the presentation and always had the first opportunity to answer
client questions. This was valuable experience for the CRA, as was the process of preparing and
rehearsing for the meetings.

Students in the CC typically work on 2-4 different projects at the same time, and the case study presented
in this paper is illustrative of how they get involved in a class project. Other types of projects they work
on are individual consulting and small group consulting. The motivation for project multiplexing is that it
gives the students experience juggling projects and managing competing deadlines within the same
course. While 2-4 simultaneous projects may be light by real world standards, it does provide the
students a glimpse of what is to come if they were to take a job as a consulting statistician. The workload
experience in the CC differs somewhat from the CRA experience, where for a CRA the simultaneous
project load is usually capped at two. The rationale for the difference is that CRAs usually “own” client
project whereas in the CC the responsibility for some of their projects is shared within a team
environment.

5.3 Summary

The case study described in this paper illustrates how the Statistical Consulting Collaboratory at UC-
Riverside not only functions to solve client problems, but also significantly enhances the ability to teach
students statistical consulting skills. The exercises in Appendix A are illustrative of the intentional effort
made in the CC to go beyond a pragmatic solution to the consulting project for the client and extract from
it additional enriching technical material for the students.
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The work tasks associated with the case study enhanced the training of students in three different quarters
of the CC, and in addition provided a unique set of experiences for the CRA. Table 7 provides a timeline
summary for the major activities. It can be seen that the technical part of the work all transpired over a
12-month period. While 12 months may seem a like a long time, the client understood the primary
mission of the Collaboratory and was satisfied with incremental progress reports on the various facets of
the analyses. Equally important, the timeframe of the project was also dictated by the client’s own pace
for being available to receive, digest and provide feedback on the reported progress.

Academic cc CRA Principal Activities
Quarter Involved? Involved?
Winter 2005 Yes Yes Proposal writing and submission

Proposal reviewed by Organization X and project cost

Spring 2005 No No was negotiated. Proposal eventually approved.

ML analysis of Bradley-Terry model with R program.

Summer 2005 No Yes Multiple client meetings with Organization X.

Goodness-of-fit test, analysis of cyclic design, power
Fall 2005 Yes Yes and precision study, linear model analyses. Client
meeting with Organization X.

Organization X reviews results and uses R code to

Winter 2006 No No .
analyze new data sets on their own.

Multiple comparisons analyses. Weak vs. Strong control
Spring 2006 Yes No for multiple comparison methods. Final client meeting
with Organization X. Client is billed for the work.

Table 7. Timeline and Principal Activities Associated with Consulting Project

The case study that was presented here is a favorite example of projects handled by the Collaboratory due
to the interest level that the Bradley-Terry model elicited from the students. The benefits to the CCs and
CRAs reported here are based on first-hand experiences, as the last two authors are former students of the
CC and former CRAs as well. The popularity of this project was substantiated by student course
evaluations and an increase in the number of students wanting to participate in the Collaboratory as a
CRA.

A number of other Collaboratory projects have similarly been amenable to the process of merging the
consulting aspects of a Collaboratory project with the educational objectives of the CC. Examples
include the application and development of a change-point algorithm for tracking reliability metrics in a
data network, the use of Classification and Regression Tree Modeling (CART) methodology (and
software) to predict success or failure in freshman chemistry classes, and the use of partial least squares
analyses for performing chemical spectroscopy analysis. Not every project that comes to the
Collaboratory can be integrated into the CC the way our case study was. For example, projects with very
short timelines may need a more direct and efficient effort. However, many projects that cannot be
worked with CC involvement in “real time” can still have one or more of their aspects incorporated
retrospectively at a later date.
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1.

APPENDIX A — Synergistic Exercises

(Bradley-Terry Model) Literature associated with the Bradley-Terry model frequently expresses
the likelihood shown in equation (3) in terms of quantities {r; }, wherer, is the rank (1 or 2,

with 1 corresponding to “preferred”) of the i-th plan when compared to the j-th plan by judge k.

a. Show r, =S§; +2(n; —S;) and infer from this that S; =2n; —r; and n;—-S§; =1, —n;.
b. Show r, +r; =3n; and infer that n; —S; =2n; —r; .

c. Use (a) and (b) to show that the likelihood in equation (3) can be written as
o (2n—r;.) j o (205 =r5i.)

t t e e
Ly, a ..o ) oo TTT1 —
i=Lici  (e“ +e™)”

(Goodness-of-Fit Test) Let {S;; ¥_. be independently distributed as binomial random variables

i<j
with parameters (n; z;) . Show that if the Bradley-Terry link function given by equation (1) is
used for {z;};_; , then the null distribution of the goodness-of-fit test statistic X2 will have
(t—2)(t—2)/2 degrees of freedom.

(Weak vs. Strong Control) Consider the set of hypotheses {Ho(i, o= aj} . and the single-

i<j<
step Q-method that rejects H, (i, j) if and only if the event E(i, j): ‘o?i —o?j‘ >q, occurs (refer to
Section 3.2). It follows from the derivation of the Q-method that

Pr{ U EG, ) | ﬂ H, (i, j) } < y, and this property is sufficient to say the Q-method has weak
i<j i<j

control of family-wise error rate (FWER). Now let K be an arbitrary subset of (i, j) pairs
corresponding to specific H, (i, j) hypotheses. The Q-method is said to have strong control of

FWER if and only if Pr{ U EGi) | () HeGud) } < y for any subset K. Show the Q-

(i,j)eK (i,j)eK
method does not have strong control of FWER by demonstrating a counter-example for the case
t=5, {n; =30}, and y =0.05 using the following simulation experiment:
a. Letthe true state of nature to be « =(1,1,1,1,1), implying all of the hypotheses

{Ho(i 1) =0} _ aretrue.

i<j<
b. Simulate {S;};.;.s from independent binomial distributions with parameters.
c. Compute Q= M_aé<| a -a;|
i<j<
d. Repeat (b) and (c) 10,000 times to show that the upper 5™ percentile of the null
distribution of Q is g, [1 0.661. (Note the Organization X design, three panels had

n; =29 which resulted in the value g, [ 0.651 that was reported in Section 3.2).

e. Now let the true state of nature be o =(1,1,4,4,4). Show that this state of nature
implies Hy(L,2), H,(3,4), H,(3,5) and H,(4,5) are the only hypotheses amongst
{Ho(i, )2 =aj} . that are true.

i<j<
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7.

f. Compute z; =e“ /(e” +e”) and simulate {S;},.,.s from independent binomial
distributions with parameters (30, ;) .

g. Compute ML estimates {&;}, and identify if any of the events E(1,2), E(3,4), E(3,5)
and E(4,5) occur.

h. Repeat steps (f) and (g) 1,000 times and verify that the fraction of cases where at least
one of the events E(1,2), E(3,4), E(3,5) and E(4,5) occurred is about 0.12.

i. Explain why the result from (h) shows the Q-method does not exhibit strong control.

(Estimation in Cyclic Design) Let S,, , S,;, S;, , and S,; be independently distributed as binomial
random variables with parameters (n; 7z;;) . Suppose the Bradley-Terry link function given by

equation (1) is used for {ﬁij}f<j . Impose the constraint &, =0 on the solution to the likelihood
and equations.
a. Define 7; =S;; /ny for (i, j) €{(1,2),(2,3),(3,4), (4,5)}. Show that the remaining part
of the solution to the likelihood equations is given by a, =log{z,, /(1-7;,)},
0ty = 109{7 1, 703 (1= 71 ) L= 73)}s @y = 10Q{Z 1, 7373y I(L— 701, ) (L = 55 )(1— 773,)} @Nd
0ty =10g{71, 7 33730 g 1 (L= 71y (L= g )(L = 730 )(1 = 745) } -
b. Display the ML estimates for all of the contrasts «; —«; and all of the {ﬂij}f’<j .

c. Isitpossible to test the goodness-of-fit of the Bradley-Terry link function with this
design? Why or why not?

(Approximate Linear Model) The independence of the {S; } observations combined with a

i<j<t
standard delta method analysis suggests least squares methods could be used as an alternative to
ML for the data analysis.

a. Define y; =log{7; /(1-7;)} and use the first-order delta method to show
approximations to the mean and variance of «; —«; are y; = log{z; /(1-7;)} and

oy =[nym (1— )1, respectively.

b. Let y denote the C} x1 vector of {yi} values. Display a C} xt design matrix, X,

I<j<t
and a C, x C; variance-covariance matrix ¥ such that the first-order delta method
motivates the approximate linear model y [1 Xa + e, where Var(e)=X.

(Ordinary Least Squares Analysis) Continue problem 5 as follows:
a. Demonstrate that X does not have full column rank and thus XX is a singular matrix.

b. Show a generalized inverse of XX is (XX)™ =(/t)l, —(/t?)J,, where 1, is txt
identity matrix and J, isa txt matrix of ones.

c. Use the Organization X data in Table 1 to compute the ordinary least squares estimator of
« and compare the corresponding ordinary least squares estimates of the contrasts
; —a; with the ML estimates of the contrasts shown in Column 2 of Table 4.

(Weighted Least Squares Analysis) The weighted least squares estimator of « ,
Qs = (X'ZX)”X'Zy, cannot be computed without first estimating .
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a. Argue that the C! xC! diagonal matrix =, defined to have diagonal elements equal to
{6} i« Where &5 =[ny 7 (1- 7)™ |, is a reasonable estimator of .

b. Use the Organization X data in Table 1 to compute the two-stage weighted least squares
estimator &, = (X'ZX)” X'y, and compare the corresponding estimates of the
contrasts ¢; —«a; with the ML estimates of the contrasts shown in Column 2 of Table 4.

c. Compute the estimated standard errors of the two-stage weighted least squares estimates
of the contrasts «; —«; and compare these values to the standard errors of the ML

estimates of the contrasts shown in Column 3 of Table 4.

8. (Power Approximation) Using the approximate linear model proposed in problem 5:

a. Displaya (t—1)xt matrix A to write the hypothesis H,:a, =---=¢, as H,: Aa=0.

b. Motivate W = (AQ,s) [AX'S*X) AT (Ad,,s) asa test statistic for H, and argue
that its null distribution is approximately chi-square with t —1 degrees of freedom.

c. Extend the motivation in (b) to assert the approximate distribution of W under arbitrary
alternatives is non-central chi-square with t —1 degrees of freedom and non-centrality
parameter equal to ¢ = (Aa)’[A(X ’Z’lX)’A’TAa.

d. Take t=5 and use (c) to repeat the construction of Table 5, but this time using the test of
H, based on W. Comment on the power of the test based on W relative to the power of
the LRT.

APPENDIX B

The R code (Version 2.1.1) shown below provides the ML estimates and the variance-covariance
matrix of {&}, based on the Organization X data shown in Table 1. The key function in the R program
is BTm, which fits Bradley-Terry models using the identifiability constrainta, =0. Lines 4-8 of the R
program create a data matrix of the {Sij}i ; values. The R structure ‘plan.data’, created in line 9, formats

the {S;};.; according to the requirements of the BTm function. Since & =0, the BTm function only

returns {&,};_, and therefore line 14 is necessary to insert a zero for the first coordinate of &. Lines 18-

19 similarly append a row and column of zeros to the variance-covariance matrix of {&};_,, which is
returned in Line 17.

The BTm function is contained in a library named ‘BradleyTerry’ that needs to be invoked as show in line
2. Prior to invoking the ‘BradleyTerry’ library, two packages need to be downloaded from the local R
CRAN (refer to http://www.r-project.org/) and installed into the local R environment. The two packages
are the bias-reduced logistic regression (brlr) package and the Bradley-Terry models (BradleyTerry)
package. After downloading the .zip files of these packages to a local hard drive, they can be installed
from the *packages’ menu in the R window, selecting the option to “Install packages from local zip files.”
The brlr package should be installed first, and then the BardleyTerry package.
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1. # Invoke Bradley-Terry Library

2 library(BradleyTerry)

3. #Read in §; Values

4 obs=matrix(c(NA,20,22,20,1,

5. 9,NA6,7,1,

6 8,24,NA,8,2,

7 10,23,21,NA,3,

8 29,29,27,27,NA),5,5,byrow=T)
9 plan.data=as.data.frame.table(obs)

10. # Call BTm function

11. plan.model=BTm(plan.data ~ ..)

12. output=summary.glm(plan.model)
13. # Retrieve the MLEs

14. alpha.hat=c(0,output$coeff[,1])

15. print(alpha.hat)

16. # Retrieve the variance-covariance matrix of MLEs
17. varcov.0=output$cov.unscaled

18. varcov.1=rbind(c(0,0,0,0),varcov.0)
19. varcov=cbind(c(0,0,0,0,0),varcov.1)
20. print(varcov)
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