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Abstract 
 
Introductory statistics textbooks rarely discuss the concept of variability for a categorical 
variable and thus, in this case, do not provide a measure of variability. The impression is 
thus given that there is no measurement of variability for a categorical variable. 
 
A measure of variability depends on the concept of variability. Research has shown that 
"unalikeability" is a more natural concept than "variation about the mean" for many 
students.  A "coefficient of unalikeablity" can be used to measure this type of variability.  
 
Variability in categorical data is different from variability in quantitative data. This paper 
develops the coefficient of unalikeability as a measure of categorical variability.  
 
 
1. Introduction 
 
Introductory statistics textbooks give considerable attention, as they should, to the 
distribution of quantitative variables and measures of their variability. Discussions of 
categorical variables, however, typically do not. The treatment of categorical data 
analysis usually moves immediately to the more interesting questions formulated in terms 
of contingency tables, with the focus of the analysis on variability among counts in the 
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table. There is usually no discussion of the concept of variability for a categorical 
variable, and thus no mention of a measure of variability that plays the role that standard 
deviation plays in the quantitative case. The impression is thus given that there is no 
concept of variability for a categorical variable, or, if there is one, there is no known way 
of measuring it. This impression is incorrect. There is a concept of variability for a 
categorical variable, and there are ways of measuring it. We suspect that a significant 
percentage of the teachers of introductory statistics are unaware of these ideas, and 
readily admit that we were not until we investigated the ideas presented in this paper. 
 
1.1 Objectives 
 
The purposes of this paper are several fold, including: 
 
1. Describe a concept of variability for a categorical variable, and provide a method for 
its measurement. This is done at an elementary level which requires no probability or 
statistics background and thus is appropriate for an introductory course. 
 
2. Show how these ideas evolved from research results on students' concepts of 
variability for quantitative variables. 
 
3.  Although our development is done independently of previous ideas, we point out that 
the underlying ideas have been around for at least ninety years. The early uses were for 
specialized applications or in statistically sophisticated settings and thus not presented in 
a fashion appropriate for a student's first exposure to variability. 
 
1.2 Students' Concepts of Variability 
 
Intuitive concepts of variation might differ among our students; we may be talking about 
one concept of variation in our classes while our students are thinking about another! 
In a study by Loosen, Lioen, and Lacante (1985), students were shown two sets of 
blocks, referred to here as set I and set II (see Figure 1). In the original study the blocks 
in set I were painted red and were 10, 20, 30, 40, 50, 60 cm high.  The blocks of set II 
were painted yellow and were 10, 10, 10 and 60, 60, 60 cm high.  Note that for 
quantitative data the height of each block in this physical representation indicates the 
magnitude of the corresponding value. 
 
The students were instructed as follows: “These are two sets of blocks: a set of red blocks 
and a set of yellow ones. In which set do the blocks have the greater variation among 
themselves?”  Fifty percent selected set I for the greater variation, 36% selected II and 
14% said there was no difference. 
 
The 50% who selected set I are making their judgment on the observation that no two 
blocks have the same length. These students are basing their choice on an intuitive 
concept of variability - unalikeability – the lack of bars of the same size or the lack of 
clusters of bars of the same size. These learners do not think of variation as “how much 
the values differ from the mean.”  Their perception has to do with “how often the 
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observations differ from one another.” The authors point out that this can be an important 
part of a classroom lesson.  The teacher can show the students that the standard deviation 
would indicate that set II has the greater variation because its standard deviation is larger 
than that of set I, and that the standard deviation is not measuring the concept of variation 
for students who selected set I.   
 
1.3 The Coefficient of Unalikeability 
 
Unalikeability is defined to mean how often observations differ from one another. 
 
The concept of unalikeability focuses on how often observations differ, not how much.  
The incidence of differences for the six blocks of set I and set II are indicated in Table 1. 
Each table gives all possible pairings of the sizes of the bars, and table entries are either 0 
or 1 to indicate whether the block sizes are equal or different, respectively. Note that all  
pairs are indicated twice -- once in each half of the table. Comparisons of a block with 
itself are not of interest and are indicated with an asterisk.   
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Set I 

 
Set II 

 
Figure 1.   Physical Representation for Two Sets of Numerical Data  
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Table 1. Incidence of Differences 
 
Set I            
 10 20 30 40 50 60 
10 * 1 1 1 1 1 
20 1 * 1 1 1 1 
30 1 1 * 1 1 1 
40 1 1 1 * 1 1 
50 1 1 1 1 * 1 
60 1 1 1 1 1 * 
 
Set II            
 10 10 10 60 60 60 
10 * 0 0 1 1 1 
10 0 * 0 1 1 1 
10 0 0 * 1 1 1 
60 1 1 1 * 0 0 
60 1 1 1 0 * 0 
60 1 1 1 0 0 * 
 
 
If the 1’s in a table are added up, we obtain the number of differences that occur when all 
possible comparisons are made, one observation with another.  If we divide by 36-6=30, 
the number of comparisons, then we get the proportion of differences that occur.   
 
For set I, where all of the data differ from one another, this proportion is 30/30 =1.  For 
set II, the proportion is 18/30 = 0.60.  Note that since all pairs appear twice, only half of 
the entries need to be counted.  In the case of set II, there would be 15 comparisons, and 
the proportion would be 9/15 = 0.60.  Also note that if all of the data are equal in value, 
this proportion is 0. 
 
This provides a coefficient of unalikeability on a scale from 0 to 1. The higher the value, 
the more unalike the data are.  If x1, x2, …, xn are n observations on a quantitative 
variable, x, Perry and Kader (2005) give a general definition for the coefficient of 
unalikeability as: 
 

� 

u =

c(xi,x j )

i! j

"

n
2
# n

 

 
where 
 

� 

c(xi,x j ) =

1,  xi ! x j

0,  xi = x j

" 

# 

$ 
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This coefficient was suggested by the idea of a “within data” variance.  Gordon (1986) 
reminds us that standard deviation and variance can be defined independently of the 
mean by taking the average of the squares of the differences between each pair of values: 

� 

W1 =

(xi ! x j )
2

j=1

n

"
i=1

n

"

n
2
! n

 

 
The coefficient of unalikeability mimics this idea by replacing the squares of distances 
with the 0 - 1 indicator of differences.  Gordon points out that  

� 

W1 = 2S
2
, where S

2
=

(xi ! x )
2

i=1

n

"

n !1
 

 
2.  ANOTHER LOOK AT UNALIKEABILITY 
 
We were recently examining some of the ideas underlying the coefficient of 
unalikeability and in doing so took a look at the coefficient from the perspective of 
categorical variables.  Although the length of the bars in Figure 1 is a quantitative 
variable, the students who think of variability as unalikeability are forming categories.  A 
category consists of all bars of the same length; once the categories are formed, the actual 
lengths are ignored.   
 
Note that in the case of a categorical variable, x, each observation is classified into one of 
m distinct categories.  In this case, the definition for quantity ),(

ji
xxc becomes: 

 

 

� 

c(xi,x j ) =

1,  if xi  and x j  are in different categories

0,  if xi  and x j  are in the same category

! 

" 
# 

$ # 
 

 
2.1 Visualizing Variability in Categorical Data 
 
Variability in categorical data is somewhat different than variability in numerical data.  
Let’s begin by examining three groups of data with ten responses on a variable with two 
possible outcomes – Category A or Category B.  
 

Group 1:  Seven responses in Category A; three responses in Category B 
Group 2:  Five responses in Category A; five responses in Category B 
Group 3:  One response in Category A; nine responses in Category B 

 
Figure 2 provides a physical representation for these three different situations. Note that, 
unlike numerical data, the bar height in this representation for categorical data does not 
indicate the magnitude of a response; it indicates only whether the response was in 
Category A or Category B.   
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Which group of data has the most variability? the least variability?  For categorical data, 
the notion “how far apart?” does not make sense; however, the notion of unalikeability 
does make sense.  Within a particular group two responses differ if they are in different 
categories and are the same if they are in the same category.  That is, the two responses 
are either unalike (different categories) or alike (same category).  Consequently, 
variability in categorical data is equivalent to unalikeability in numerical data. 
 
Comparing Groups 1 and 2, the data in Group 1 are more alike since seven of the values 
are the same (i.e., 7 are in Category A), while only five of the values in Group 2 are the 
same (i.e., 5 are in either Category A or B).  Consequently, the data in Group 2 are more 
unalike.  That is, there is more variability in Group 2 than in Group 1.  Since nine of the 
values in Group 3 are the same (i.e., 9 are in Category B) then, among the three groups, 
Group 3 has the least variability. 
 
2.2 Quantifying Variability with Two Categories 
 
For reasons that will evolve in the following discussion, we propose an alternative 
definition for the coefficient of unalikeability as: 
 

� 

u2 =

c(xi,x j )

j=1

n

!
i=1

n

!

n
2

, where 

� 

c(xi,xi ) = 0 , i = 1, 2, …, n 

 
When u is defined with the divisor 

� 

n
2

! n , the coefficient has value 1 with all distinct 
measurements.  Using 

� 

n
2 as the divisor instead produces a value close to 1 for large n 

since: 
 

� 

1

n
2 ! n

=
n
2

n
2 ! n

1

n
2

" 

# 
$ 

% 

& 
' =

n

n !1
1

n
2

" 

# 
$ 

% 

& 
'  

 
This second coefficient is analogous to the other “within data” variance proposed by 
Gordon (1986): 
 

� 

W2  =  

(xi ! x j )
2

j=1

n

"
i=1

n

"

n
2

 

 
Gordon points out that 

 

� 

W2 = 2V ,  where V =

(xi ! x )
2

i=1

n

"

n
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The incidence of differences for the ten responses of Groups 1, 2, and 3 are shown in 
Table 2.  Each table gives all possible pairings of responses, and table entries are either 1 
or 0 to indicate whether the responses are unalike or alike, respectively.  The 
corresponding values for u2 are indicated in Table 3.   
 

 
 
Group 1 

 

 
 
Group 2 

 

 
 
Group 3 

 
Figure 2.  Physical Representations for Three Groups of Categorical Data 
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Table 2.   Incidence of Differences for Three Groups of Categorical Data 
 
Group 1  
 A A A A A A A B B B 
A 0 0 0 0 0 0 0 1 1 1 
A 0 0 0 0 0 0 0 1 1 1 
A 0 0 0 0 0 0 0 1 1 1 
A 0 0 0 0 0 0 0 1 1 1 
A 0 0 0 0 0 0 0 1 1 1 
A 0 0 0 0 0 0 0 1 1 1 
A 0 0 0 0 0 0 0 1 1 1 
B 1 1 1 1 1 1 1 0 0 0 
B 1 1 1 1 1 1 1 0 0 0 
B 1 1 1 1 1 1 1 0 0 0 
 
Group 2  
 A A A A A B B B B B 
A 0 0 0 0 0 1 1 1 1 1 
A 0 0 0 0 0 1 1 1 1 1 
A 0 0 0 0 0 1 1 1 1 1 
A 0 0 0 0 0 1 1 1 1 1 
A 0 0 0 0 0 1 1 1 1 1 
B 1 1 1 1 1 0 0 0 0 0 
B 1 1 1 1 1 0 0 0 0 0 
B 1 1 1 1 1 0 0 0 0 0 
B 1 1 1 1 1 0 0 0 0 0 
B 1 1 1 1 1 0 0 0 0 0 
 
Group 3  
 A B B B B B B B B B 
A 0 1 1 1 1 1 1 1 1 1 
B 1 0 0 0 0 0 0 0 0 0 
B 1 0 0 0 0 0 0 0 0 0 
B 1 0 0 0 0 0 0 0 0 0 
B 1 0 0 0 0 0 0 0 0 0 
B 1 0 0 0 0 0 0 0 0 0 
B 1 0 0 0 0 0 0 0 0 0 
B 1 0 0 0 0 0 0 0 0 0 
B 1 0 0 0 0 0 0 0 0 0 
B 1 0 0 0 0 0 0 0 0 0 
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Table 3.  Value of 

� 

u2 for Three Groups of Categorical Data 
 

Group  u2   
1  42/100 = .42 
2  50/100 = .50 

 3   18/100 = .18  
 
The values for 

� 

u2 indicate that the data in Group 3 are most alike and the data in Group 2 
are most unalike.  That is, Group 3 has the least variation and Group 2 has the most 
variation.  
 
A second look at the table of incidences for Group 1 (Table 2) reveals that the 1's occur 
in the array in blocks.  
 
The sum of the 1's can be determined by: 
 

� 

7 ! 3+ 3 ! 7 = 2 ! 7 ! 3 
 

Thus 

� 

u2 = 2 !
7 ! 3

10
2

= 2 !
7

10
!
3

10
 

 
Note that here u2 has the form: 
 
 

� 

2p1p2 (1) 
 
where 

� 

p1, p2 are the proportion of responses in categories A, B respectively. 
 
The sum of the 1's can also be determined by: 
 

� 

7 ! (10 " 7) + 3 ! (10 " 3) 
 

Thus 

� 

u2 =
7

10
!
(10 " 7)

10
+
3

10
!
(10 " 3)

10

� 

=
7

10
! 1"

7

10

# 

$ 
% 

& 

' 
( +

3

10
! 1"

3

10

# 

$ 
% 

& 

' 
(  

 
Note that here u2 has the form 

� 

p1(1! p1) + p2(1! p2). 
 
The sum of the 1's can also be determined by: 
 

� 

10 !10 " (7 ! 7 " 3 ! 3)  
 

Thus 

� 

u2 =
10 !10 " (7 ! 7 + 3 ! 3)

10
2

=1"
7

10

# 

$ 
% 

& 

' 
( 

2

"
3

10

# 

$ 
% 

& 

' 
( 

2

 

 
Note that here u2 has the form 

� 

1! p1
2
! p2

2. 
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In each case we get .42, the proportion of possible pairings which are unalike.  Note that 
the three formulas for finding u2 work for the Groups 2 and 3 as well. 
 
2.3 Connections to a Bernoulli Variable 
 
The widely used Bernoulli variable codes responses for a two-outcome categorical 
variable as 1 (Category A) or 0 (Category B).  With 

 

� 

p1 = the proportion of 1’s or the proportion of responses in Category A, and  

� 

p2 = 

� 

1! p1 = the proportion of 0’s or the proportion of responses in Category B. 
 
It is well known that the mean of a Bernoulli variable is 

� 

p1 and the variance, V, is 

� 

p1p2 .  
So, like the second form of Gordon’s within variance, 

� 

W2
, the coefficient of 

unalikeability as described in Equation (1) can be expressed as: 
 
 

� 

u2 = 2V  
 
2.4  Quantifying Variability with Three Categories 
 
Consider the following data on ten responses for a variable with three possible outcomes 
– Category A, Category B or Category C: 
 
Group 4:  Two responses in Category A; three responses in Category B; and five 
responses in Category C 
 
The table of incidences for Group 4 (Table 4) reveals that the 1's again occur in the array 
in blocks.  
 
Table 4.  Incidence of Differences for Three Outcome Categorical Variable 
 
Group 4  
 A A B B B C C C C C 
A 0 0 1 1 1 1 1 1 1 1 
A 0 0 1 1 1 1 1 1 1 1 
B 1 1 0 0 0 1 1 1 1 1 
B 1 1 0 0 0 1 1 1 1 1 
B 1 1 0 0 0 1 1 1 1 1 
C 1 1 1 1 1 0 0 0 0 0 
C 1 1 1 1 1 0 0 0 0 0 
C 1 1 1 1 1 0 0 0 0 0 
C 1 1 1 1 1 0 0 0 0 0 
C 1 1 1 1 1 0 0 0 0 0 
 
The sum of the 1's in Table 4 can be determined by: 
 

� 

(2 ! 3+ 2 ! 5) + (3 ! 2 + 3 ! 5) + (5 ! 2 + 5 ! 3) = 2(2 ! 3+ 2 ! 5 + 3 ! 5)  
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Thus 

 

� 

u2 = 2 !
2

10
!
3

10
+
2

10
!
5

10
+
3

10
!
5

10

" 

# 
$ 

% 

& 
'  

 
Note that here 

� 

u2 has the form 

� 

2 p1p2 + p1p3 + p2p3( ), where 

� 

p1, p2, p3 are the 
proportion of responses in categories A, B, and C, respectively. 
 
The sum of the 1's can also be determined by: 
 

� 

2 ! (10 " 2) + 3 ! (10 " 3) + 5 ! (10 " 5) 
 
Thus  

� 

u2 =
2

10
!
(10 " 2)
10

+
3

10
!
(10 " 3)
10

+
5

10
!
(10 " 5)
10

=
2

10
! 1"

2

10

# 

$ 
% 

& 

' 
( +

3

10
! 1"

3

10

# 

$ 
% 

& 

' 
( +

5

10
! 1"

5

10

# 

$ 
% 

& 

' 
( 

 
Note that here 

� 

u2 has the form

� 

p1(1! p1) + p2(1! p2) + p3(1! p3). 
 
The sum of the 1's can also be determined by: 
 

� 

10 !10 " (2 ! 2 + 3 ! 3+ 5 ! 5)  
 

Thus  

� 

u2 =
10 !10 " (2 ! 2 + 3 ! 3+ 5 ! 5)

10
2

=1"
2

10

# 

$ 
% 

& 

' 
( 

2

"
3

10

# 

$ 
% 

& 

' 
( 

2

"
5

10

# 

$ 
% 

& 

' 
( 

2

 

 
Note that here 

� 

u2 has the form 

� 

1! p1
2
! p2

2
! p3

2 . 
 
In each case we get .62, the proportion of possible pairings which are unalike. 
 
2.5 The Coefficent of Unalikeability for a Categorical Variable 
 
For the case of a finite number of observations (n), a finite number of categories (m) and 
a finite number of objects, ki, within Category i, as previously illustrated the pattern of 
blocks will allow expression of the coefficient of unalikeablity as: 
 
 

� 

u2 = 2 pi
i< j

! p j  or, (2) 

 
 

� 

u2 = pi
i

! (1" pi )  or, (3) 

 
 

� 

u2 =1! pi
2

i

"  (4) 
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where 

� 

pi =
ki

n
. 

 
The interpretation of 

� 

u2 is that it represents the proportion of possible comparisons 
(pairings) which are unalike.  Note that 

� 

u2 includes comparisons of each response with 
itself. 
 
3. Measuring Population Diversity 
 
"Unalikeability" is essentially equivalent to the several concepts of "population diversity" 
that have been developed in a variety of disciplines such as sociology, economics, 
linguistics and ecology. In conjunction with these concepts measures of diversity have 
been developed, and the simplest of these are essentially equivalent to "the coefficient of 
unalikeability."  Because they evolved from applications within disciplines, they appear 
in the literature under several different names and are described with different notation. 
These kinds of measures are rarely mentioned in introductory statistics textbooks of a 
general nature, although they are sometimes presented in discipline based textbooks such 
as introductory "statistics for the social sciences" or "statistics for the biological 
sciences." 
 
3.1 Diversity Within a Population 
 
Lieberson (1969) describes diversity from the perspective of sociology as “the position of 
a population along a continuum ranging from homogeneity to heterogeneity with respect 
to one or more qualitative variables.” Through the following example, he illustrates a 
general method for describing the magnitude of diversity within social aggregates by 
pairing all possible units in the population and determining the proportion of pairs of 
responses that are in different categories.   
 

“Suppose an investigator wishes to measure the degree of religious diversity within a 
specified aggregate, e.g., a city. A very simple operational solution is to describe the 
city in terms of the probability that randomly paired members of the population will 
hold different religious affiliations.” 

 
Lieberson points out that his index is essentially identical to each of the following 
measures: 
 

Gini's index of mutability (1912) 
Simpson's measure of diversity (1949) 
Bachi's index of linguistic homogeneity (1956) 
Greenberg's Monolingual Non-Weighted Method for measuring linguistic diversity 
(1956) 
The index of qualitative variation described by Mueller and Schuessler (1961) 
Gibbs and Martin's measurement of industry diversification (1962) 
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In order to convey the operational interpretations of these measures, discussions of 
Simpson's and Greenberg's ideas are presented in the following section. 
 
3.2 Operational Interpretations of Two Diversity Measures. 
 
Pielou (1969) discusses Simpson's measure of diversity within the context of 
mathematical ecology as follows.  
 

"Suppose two individuals are drawn at random and without replacement from an S-
species collection containing N individuals, of which 

� 

N j  belong to the jth species 
(j=1,2,...,S; 

� 

N jj
! = N ).  If the probability is great that both individuals will belong 

to the same species, we can say that the diversity of the collection is low. This 
probability is 

 

� 

N j (N j !1)

N(N !1)
j

"  

 
and so we may use 

 

� 

D =1!
N j (N j !1)

N(N !1)
j

"  

 
as a measure of the collection's diversity." 

 
Greenberg (1956) describes the Monolingual Nonweighted Methods for measuring 
linguistic diversity as follows.   
 

“If from a given area we choose two members of the population at random, the 
probability that these two individuals speak the same language can be considered a 
measure of its linguistic diversity. If everyone speaks the same language, the 
probability that two such individuals speak the same language is obviously 1, or 
certainty. If each individual speaks a different language, the probability is zero. Since 
we are measuring diversity rather than uniformity, this measure may be subtracted 
from 1, so that our index will vary from 0, indicating the least diversity, to 1, 
indicating the greatest. 
 

!"=

i

iA )(1 2  

 
where i is the proportion of speakers for a particular language." 

 
Note that in both discussions, the measure of diversity is described in terms of the 
likelihood of two responses being either the same or being different, and the measure of 
diversity is expressed in a form similar to Equation (4). 
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4.  Textbooks 
 
Agresti (1990) develops the idea of variability in categorical data though contingency 
tables in which data on two categorical variables (an explanatory variable and a response 
variable) are summarized in a contingency table.  He presents the general idea of 
measuring variability for a single nominal response variable Y in the following way: 
 
 

� 

V (Y ) = !+ j" (1#!+ j ) =1# !+ j
2"  

 
where 

� 

!+ j  is the probability a response is in Category j.  Note that Agresti’s first 
expression for V(Y) is equivalent to 

� 

u2 as described in Equation (3), and his second 
expression is equivalent to 

� 

u2 as described in Equation (4). 
 
Agresti points out that this quantity “is the probability that two independent observations 
from the marginal distribution of Y fall in different categories." He also notes that in the 
case of m distinct categories for Y, V(Y) is maximized when 

� 

!+ j = 1/m  for all j and the 
maximum value is (m-1)/m.  It is minimized when all responses are in the same category, 
in which case is 0.  Of course, Agresti’s book is not an introductory textbook and his 
presentation of the notion of variability for a categorical variable is not at an elementary 
level. Also, the presentation of this idea seems to have been deleted from the latest 
edition of his book. 
 
Although some may exist, we have not seen a general introductory level statistics text 
that includes a discussion on measuring variability in qualitative data.  However, some 
introductory statistics books designed for the social sciences do include such a 
discussion.  For example, the book Social Statistics for a Diverse Society (Leon-Guerrero 
and Frankfort-Nachmias, 2000), presents the index of qualitative variation (IQV) as a 
measure of variability for nominal variables.  The IQV is described as a measure of 
variability for qualitative variables “based on the ratio of the total number of differences 
in the distribution to the maximum number of possible differences within the same 
distribution.” This definition is equivalent to the coefficient of unalikeability. Their 
presentation does not develop the underlying ideas but is formula driven and moves 
immediately from the definition to how to calculate the IQV from a frequency table. 
 
5.  Summary 
 
A measure of variability depends on the concept of variability. In the case of quantitative 
measurements, the standard deviation is measuring variation about the mean.  Our 
students, however, may be thinking about other concepts such as unalikeability.  We 
should emphasize these distinctions in our teaching. 
 
Variability in categorical data is based on unalikeability (diversity), which is quite 
different from variability in quantitative data.  Thus the coefficient of unalikeability is a 
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natural measure of variability that has a well-defined interpretation. The concept and its 
measurement are appropriate for an introductory statistics course. 
 
The evolution of ideas is often ignored in the teaching of statistics. It is important, in our 
opinion, to show students how definitions and formulas evolve. The coefficient of 
unalikeability is a fairly straightforward illustration of how measures of statistical 
concepts can be invented.  We have found this sort of development effective for other 
concepts.  For example, developing the mean absolute deviation as a prelude to the 
standard deviation.  The idea of a ratio based on counts as a correlation coefficient can be 
introduced before the full development of Pearson’s correlation coefficient (Holmes 
2001). 
 
The distinction between "unalikeability" and "variation about the mean" is based on the 
difference between “how often” and “how much.”  Throughout statistical analysis we see 
this type of distinction, especially the difference between measures based on distance and 
those which are not based on distance.  Most introductory presentations of statistics 
emphasize the differences between measures based on distance and measures based on 
order for quantitative data.  We believe the development of statistical thinking should 
include a discussion on measuring variability in categorical data as well. 
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