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Abstract 

The data for 104 software projects is used to develop a linear regression model that uses function 
points (a measure of software project size) to predict development effort. The data set is 
particularly interesting in that it violates several of the assumptions required of a linear model; 
but when the data are transformed, the data set satisfies those assumptions.  In addition to 
graphical techniques for evaluating model aptness, specific tests for normality of the error terms 
and for slope are demonstrated. The data set makes for an excellent case problem for 
demonstrating the development and evaluation of a linear regression model. 

1. Introduction 

For any organization involved with the creation of computer software, the ability to predict 
development effort plays a key role in the effective management of the software development 
process.  Regression models based on a software metric called function points are an important 
tool used in the estimation of software development effort.  Through these regression models a 
manager can compare estimated development effort across multiple proposed projects and make 
intelligent decisions concerning scheduling and priority of the projects.  In this paper we develop 
and evaluate a linear regression model that predicts software development work hours based on a 
function point measure of software size. 
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1.1 Function Point Analysis 
 
Function points are a standard metric used for estimating the size of software development 
projects (International Function Point Users Group, 2005).  Function point analysis is a 
structured method of estimating the size and complexity of a software system.  This estimation 
process is based on the breaking down of a system into smaller components called function 
points, which measure different types of business functionality delivered by the system to the 
end user.  Function points provide a means of measuring the system functionality perceived by 
the end user, and are independent of the technology (computer language, operating system, etc.) 
used to implement the system.   Once a count of the function points for a proposed system has 
been developed, the count can be compared to historical function point counts for completed 
systems.   Using the known development times of the completed systems, an estimate of the 
development effort required for the proposed system can be generated. 

When a new software project is being planned, the number and types of function points for the 
project can be estimated from the design specifications, thus making it possible to estimate 
development effort during the early phases of project planning.  In addition, since the function 
point count is derived from the design specifications, any changes in the specifications (which 
occur frequently during software development) can be easily accounted for in the estimate of 
development effort. 

There are five basic types of function points: external inputs (data coming from the user or some 
other system), external outputs (reports or messages going out to the user or some other system), 
external inquiries (queries coming from outside the system which result in a report being sent to 
the requestor), internal logical files (data files that reside within the boundaries of the system), 
and external interface files (data files that reside outside the boundaries of the system).  
Standardized criteria have been developed to allow the consistent identification and 
categorization of function points from the design specifications of a proposed system, or from 
the actual features of an existing system (International Function Point Users Group, 2005).  Once 
an initial count of function points has been generated, it is adjusted to allow for the overall 
complexity of the system, using a standardized system of weights that account for 14 different 
system factors (for a more detailed account of the adjustment process, see Function Point 
Counting Practices Manual, 2001).  The final adjusted function point measure (FP) is then 
complete, and serves as an objective measure of the system’s size and complexity. 

1.2 The Data Set 
 
The data used in this paper are from 104 software projects completed at AT&T from 1986 
through 1991.  For each project five values are recorded: the adjusted function point count, the 
actual work hours devoted to completing the project, the operating system used, the database 
management system used, and the programming language used. The adjusted function point 
count is the only predictor variable discussed in detail in this paper. One unique aspect of this 
data set is the fact that the projects represent a total of 7,981 man-months or 665 man-years of 
effort. This is a very large set of software projects. The project data represent both new project  
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development and project enhancements, and the data are not ordered by time or any other 
variable.  Figures 1 and 2 show the distribution of function points and work hours. 
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Figure 1. Distribution of Function Points 
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Figure 2. Distribution of Work Hours 
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1.3 The Objective 
 
This paper presents a methodology for the development of a linear regression model for 
estimating software development effort using historical function point data.  In developing a 
useful regression model, a number of concerns must be addressed. The first is model adequacy, 
or explanatory power of the independent variable in accounting for the variability of the 
dependent variable. This is typically measured by the coefficient of determination, R2. A large 
value of R2 is a good indication of how well the model fits the data. However, it is not the only 
measure of a good model when the model is to be used to make inferences. Linear regression 
models are tied to certain assumptions about the distribution of the error terms. If these are 
seriously violated, then the model is not useful for making inferences. Therefore, it is important 
to consider the aptness of the model for the data before further analysis based on that model is 
undertaken.  

Model aptness refers to the conformity of the behavior of the residuals to the underlying 
assumptions for the error values in the model. When a regression model is built from a set of 
data, it must be shown that the model meets the statistical assumptions of a linear model in order 
to conduct inference.  Residual analysis is an effective means of examining the assumptions. 
This method is used to check the following statistical assumptions for a simple linear regression 
model: 
 

1. the regression function is linear in the parameters, 
2. the error terms have constant variance, 
3. the error terms are normally distributed, and 
4. the error terms are independent. 

If any of the statistical assumptions of the model are not met, then the model is not appropriate 
for the data.  The fourth assumption (independence of error terms) is relevant when the data 
constitute a time series. Since the data in this paper is not time series data, we do not test for 
independence of the error terms. 
 
Residual analysis uses some simple graphic methods for studying the aptness of a model, as well 
as some formal statistical tests for doing so. In addition, when a model does not satisfy these 
assumptions, certain transformations of the data might be done so that these assumptions are 
reasonably satisfied for the transformed model.  
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2. Methodology 

The following procedure was used to develop and evaluate the regression model: 

1. Plot the dependent variable against the (various) predictor variable(s).   
2. Hypothesize a model. 
3. Check if the statistical assumptions for the regression model are reasonably satisfied. If 

so, an appropriate model has been identified. If not, repeat steps (2) and (3). 
 
2.1 Straight Line Model 
 
The scatter plot shown in Figure 3 indicates that a simple linear regression model might be 
appropriate for our project data. In particular, the fitted regression model is 
 
 Eest = 585.7 + 15.124 × FP      (Model 1) 
 
where Eest is the estimated development hours and FP is the size in function points.  The 
coefficient of determination (R2) for this model is 0.655.  The Minitab results for the simple 
linear regression model are shown in Table 1. 
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Figure 3: Work Hours vs. Function Points 
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Predictor Coef SE Coef T P  
Constant 585.7 965.5 0.61 0.545  
Function Points 15.124 1.086 13.93 0.000  
      

Table 1: Minitab Results for Model 1 
 

 
To determine the adequacy of the model, residual analysis should be performed.  Figure 4 shows 
the plot of residuals against the independent variable (function points).   
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Figure 4: Residuals vs. Function Points for Linear Fit 

 
 
The spread of residuals around zero increases as function points increase for this plot. Ideally, 
the residuals should fluctuate in a more or less uniform band around zero. The residuals shown in 
Figure 4 get larger as software size in function points increases, an indication that the error 
variance is not constant. The project data violate the equal variance assumption.   
 
A normal probability plot of the residuals can be used to test the normality of the error terms. 
The normal probability plot in Figure 5 is not linear, an indication that this assumption is also 
being violated. A Kolmogorov-Smirnov (K-S) test for normality resulted in a p-value less than 
.010, a second indication that the error terms are not normally distributed.  
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Figure 5: Normal Probability Plot of Residuals When Fitting by a Line 

 
 
Based on the results of the residual analysis, if inference about development effort is to be 
conducted, then fitting function points by simple linear regression model is inappropriate. The 
model violates the constant error variance and normality assumptions.  
 
2.2 Regression Model Using Transformed Data 
 
Some sort of transformation is often used to deal with the lack of constant variance.  A common 
way of stabilizing the variance is to apply a logarithmic transformation to the data.  Applying 
this transformation to the dependent and independent variables and plotting the transformed data 
(Figure 6), a linear relationship can be seen between the natural logarithm of development effort 
and the natural logarithm of function points.   
 
The regression model built from the transformed project data is as follows: 
 
 ln(Eest) = 2.5144 + 1.0024 × ln(FP)     (Model 2) 
 
where ln(Eest) is the natural logarithm of estimated development hours and ln(FP) is the natural 
logarithm of function points.  The coefficient of determination (R2) for this model is 0.534.  The 
Minitab results for this regression are shown in Table 2. 
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Figure 6: Natural Logarithm of Work Hours vs. Natural Logarithm of Function Points 

 

 
Predictor Coef SE Coef T P  
Constant 2.5144 0.5660 4.44 0.000  
Ln_FP 1.00239 0.09274 10.81 0.000  
      

Table 2: Minitab Results for Model 2 
 
 
The next step is to check the equal variance and normality assumptions.  A scatter plot of the 
residuals against the independent variable (natural logarithm of function points) is shown in 
Figure 7. No pattern in the residual data is apparent.  The logarithmic transformation resolved the 
problem with increasing variance of error terms that existed with the project data in its original 
form. 
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Figure 7: Residuals Versus Natural Logarithm of Function Points 

 
 
To check the error terms for normality, a histogram of the residuals and a normal probability plot 
of residuals are shown in Figures 8 and 9, respectively.  The normal probability plot is nearly 
linear, indicating that the error terms are normally distributed.  The shape of the histogram 
supports this conclusion. In addition, a K-S test for normality resulted in a p-value greater than 
.150. The K-S test provides further support for the error terms being normally distributed.  
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Figure 8: Histogram of Residuals – Transformed Data 
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Figure 9: Normal Probability Plot of Residuals When Fitting by a Line 

 
 
Therefore, Model 2 apparently satisfies the assumptions of equal variance and normality.  
Thus, Model 2 is appropriate for the transformed project data. 
 
Since the assumptions of our regression model are reasonably satisfied, we may now perform 
inference for our model.  Appendix A, for instance, shows the results of a test for the slope β1 = 0 
versus β1 ≠ 0 (Neter, Wasserman, and Kutner, 1985).  We conclude that β1 ≠ 0 and a 95% 
confidence interval for the slope β1 is 0.818 < β1 < 1.186. 
 
For an example of applying Model 2 to estimate software development effort, suppose a system 
has a software size of 381 function points.  To estimate development effort, the function points 
must be transformed: ln(FP) = ln (381) = 5.9428.  Using the regression equation for Model 2, 
 
 Ln(Eest) = 2.5144 + 1.0024 × (5.9428) = 8.4715. 
 
Taking the inverse logarithm of 8.4715, the estimated development effort for the system is 
4776.5 hours or 36.7 man-months.  One man-month is defined as 130 hours. 
 
2.3 Using Prediction Intervals 
 
The regression model (Model 2) derived from the logarithmic transformed data satisfies the 
assumptions of a linear model and is an appropriate simple linear regression model of the 
transformed project data.  However, some problems exist in this software project data that make 
statistical models difficult to use.  Software data variance tends to increase with increasing  
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project size, and the data typically have a relatively large number of outliers.  The project data in 
this study reflected these characteristics, although the effect of the outliers was lessened by the 
logarithmic transformation on the project data.  The point estimate produced by the cost 
estimation model is misleading without some measure of the variability that exists in the sample 
of projects.  Specifying an upper and lower bound for the estimate in the form of a prediction 
interval provides this needed measure of variability. 

The coefficient of determination for this model was 0.534, which means that almost half of the 
variability cannot be explained by the model.  Basing an estimate solely on the results of this 
model would be extremely risky.  However, the model is not without significance and usefulness 
because it leads to a measure of the uncertainty that exists in the point estimate.  The primary 
cost estimate should always be based on a detailed analysis of the work to be performed.  The 
model developed in this study could be used to provide further support of the detailed cost 
estimate and provide a measure of uncertainty for the effort estimate. 
 
Prediction intervals for Model 2 (Appendix B) are apparently narrower for small projects and get 
wider as software size in function points increases.  For example, the smallest project in the 
sample of project data is 119 function points. The point estimate of development effort for this 
project is 11.4 man-months. Considering that the corresponding 90% prediction interval is 2.91 
man-months to 44.98 man-months the practical application of this model becomes questionable.  
 
3. Classroom Applications 
 
The data has been used in a sophomore-level engineering statistics class to demonstrate the 
development of linear regression models. The first assignment used the data to develop a simple 
linear regression model that could be used to predict development effort using function points. 
The assignment requires that students plot the data to see if a linear model seems appropriate. 
The students are then required to determine the regression model, to explain the meaning of the 
coefficient of determination, and to use an appropriate statistical test for a non-zero slope. The 
students are asked to perform residual analysis to verify that the assumptions of a linear model 
are satisfied. They must describe each assumption and explain the results of their analysis. When 
they discover that some of the assumptions have been violated, they are asked to try a 
transformation of the data. The text (Devore, 1995) for the class had a table of useful 
transformations.  
 
The second assignment dealt with developing a multiple regression model. In addition to 
function points, the data also includes three other explanatory variables: operating system, 
database management system, and programming language. This requires the use of indicator 
variables. Inclusion of these variables results in a modest improvement over the simple linear 
regression model, increasing the R-Squared value from .534 to .694.  The Minitab results for a 
multiple regression model are shown in Table 3.  (The variable Unix, for example, is equal to 1 if 
the Unix operating system was used and is equal to 0 if the Unix operating system was not used.) 
While this paper does not address multiple regression, the topic is discussed, for example, by 
Chu (2001). 
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The regression equation is     
ln(WH) = 2.48 + 0.866 ln(FP) + 0.155 Unix + 0.990 IDMS + 1.35 IMS 
   + 0.343 INFORMIX + 0.225 INGRESS + 0.509 COBOL + 0.121 PL1  - 0.230 C 
       

Predictor Coef StDev T P   
Constant 2.479 0.5159 4.81 0.000   
ln(FP) 0.86635 0.0796 10.88 0.000   
Unix 0.1549 0.3123 0.50 0.621   
IDMS 0.9899 0.2015 4.91 0.000   
IMS            1.3473 0.2516 5.35 0.000   

INFORMIX 0.3434 0.2270 1.51 0.134   
INGRESS 0.2252 0.3033 0.74 0.460   
COBOL 0.5094 0.1798 2.83 0.006   
PLI 0.1215 0.2561 0.47 0.636   
C -0.2296 0.2855 -0.80 0.423   
       
S = 0.6583  R-SQ = 72.0% R-Sq(ajd) = 69.4%  

Table 3: Minitab Results for Multiple Regression Model  
 
 

4. Summary 
 
Regression analysis was used to determine the relationship between actual software development 
effort and software size in function points.  An initial linear regression model was built, and upon 
further investigation was found to violate the constant error variance and normality assumptions 
of a linear model. Techniques for discovering these violations were demonstrated, along with 
one possible method of rectifying the violations: using a logarithmic transformation of the data.  
After transforming the data a second regression model was developed and was shown to satisfy 
the previously violated assumptions.  We concluded with the use of prediction intervals to 
demonstrate the practical limitations of the final model.  
 
5. Getting the data 
 

The data discussed in this article are contained in the .dat file aptness.dat at http:// 
www.amstat.org/publications/jse/datasets/aptness.dat.  The file aptness.txt at http:// 
www.amstat.org/publications/jse/datasets/aptness.txt contains a description of the data and, in 
particular, a listing of the different variables. 
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Appendix A:  Test for Non-Zero Slope 

 
Test for non-zero slope for Model 2 using the natural logarithm of function points and the natural logarithm of 
development hours. 

Yi = β0 + β1Xi  + εi 

 
where Yi is the natural logarithm of estimated effort in hours and Xi is the natural logarithm of function points. 
 
Test of Hypothesis: 
   H0: β1 = 0 
   H1: β1 ≠ 0 
 
Significance Level α = .05 
    
Test Statistic:  T = 

1

1

S

b
 

 
where S1 estimates the variance of the estimated slope b1 for the project data. 

    
Decision Rule:   Reject H0 if ‌ ‌ │T│ > tα/2,n-2 

 
 
Calculate the test statistic: 
    T = 

09274.

00239.1  = 10.81 

 
 
Conclusion: 
 
│T│= 10.81 is greater than t.025,102 = 1.9835. There is sufficient evidence to reject the null hypothesis and 
conclude that β1 ≠ 0.  
 
 
95% Confidence Interval for β1: 
 

b1 - t.025,102S1 < β1 <  b1 + t.025,102S1 

 
1.00239 – (1.9835)(.09274) < β1 < 1.00239 + (1.9835)(.09274) 
 
   .818 < β1 < 1.186 
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Appendix B:  Prediction Interval 
 
 

 
A 100(1-α)% prediction interval for Y is given by YL and YU  where 
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Sample calculations of 90% prediction interval for Model 2 where 
n = 104, x0 = ln(119) = 4.7791, Yh = 2.5144 + 1.0024 (4.7791) = 7.3050, sx= .8669, x  = 6.0423,  
MSE = .6657, α = .10, and tα/2,102 = 1.6599 
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5.9363 < Yh < 8.6737  
 
 

Taking the inverse logarithm, the interval becomes 
 

378.54 hours < Eest < 5846.84 hours 
 

With 90% confidence, Model 2 predicts that the development of a system with software size of 119 function 
points will require somewhere between 378.54 and 5846.84 man-hours of effort. Using 130 man-hours per 
man-month, the prediction interval becomes 2.91 man-months to 44.98 man-months with a point estimate of 
11.4 man-months.  
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