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Abstract
In Bayesian statistics, the choice of the prior distribution is often controversial. Different
rules for selecting priors have been suggested in the literature, which, sometimes, produce
priors that are difficult for the students to understand intuitively. In this article, we use a
simple heuristic to illustrate to the students the rather counter-intuitive fact that flat priors
are not necessarily non-informative; and non-informative priors are not necessarily flat.

1 Introduction

In Bayesian analysis, selecting priors using Jeffreys’ rule (e.g., Tanner 1996; Gelman, et al.
1995) can yield some rather counter-intuitive results that are hard for students to grasp.
Consider the following simple scenario: Let X1, X2, ..., Xn be i.i.d. observations from the
Bernoulli(p) distribution. To estimate p, a Bayesian analyst would put a prior distribution
on p and use the posterior distribution of p to draw various conclusions, e.g., estimating p
with the posterior mean. When there is no strong prior opinion on what p is, it is desirable
to pick a prior that is non-informative.
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In this simple case, it is most intuitive to use the uniform distribution on [0,1] as a non-
informative prior; it is non-informative because it says that all possible values of p are equally
likely a priori. However, a non-informative prior constructed using Jeffrey’s rule is of the
form (see e.g., Gelman 1995)

π(p) ∝ 1√
p(1− p)

. (1)

Jeffrey’s rule is motivated by an invariance argument: Suppose one picks πp(p) as the prior
for p according to a certain rule. In order for πp(p) to be non-informative, it is argued that
the parameterization must not influence the choice of πp(p), i.e., if one re-parameterizes the
problem in terms of θ = h(p), then the rule must pick

πθ(θ) = πp(h
−1(θ))

∣∣dp
dθ

∣∣
as the prior for θ.

Given p, let f(x|p) be the likelihood function. Jeffrey’s rule is to pick

πp(p) ∝ (I(p))
1
2

as a prior, where

I(p) = −E

(
d2 log f(x|p)

dp2

)
is the Fisher Information. To see that this is invariant with respect to parameterization,
suppose we re-parameterize in terms of θ = h(p), then

I(θ) = −E

(
d2 log f(x|θ)

dθ2

)
= −E

(
d2 log f(x|p)

dp2

(
dp

dθ

)2
)

= I(p)

(
dp

dθ

)2

.

Applying Jeffrey’s rule, one would pick a prior on θ as

πθ(θ) ∝ (I(θ))
1
2

= (I(p))
1
2

∣∣dp
dθ

∣∣
= πp(p)

∣∣dp
dθ

∣∣,
which satisifies the invariance argument.

Jeffrey’s prior for this simple problem can be quite counter-intuitive. Under the prior (1),
it appears that some values of p are more likely than others (see e.g., Figure 1). Therefore
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intuitively, it appears that this prior is actually quite informative. This is a very difficult
point to explain to the students.

In this article, we construct a simple (albeit naive) argument and illustrate to the students
why the uniform prior is not necessarily the most non-informative. We will not rely on the
Fisher information or Jeffreys’ invariance argument. Instead, we rely on a very simple and
naive heuristic to judge the non-informativeness of a prior: Since the maximum likelihood
estimator (MLE) is not affected by any prior opinion, we simply ask: is there a prior which
would produce a Bayesian estimate (e.g., posterior mean) that coincides with the MLE? If so,
that prior could be regarded as non-informative since the prior opinion exerts no influence on
the final estimate whatsoever. Using this naive heuristic, we can see that the uniform prior
is actually more informative than Jeffreys’ prior (1); whereas the least informative prior is,
surprisingly enough, an extremely “opinionated” distribution approaching two point masses
at 0 and 1!

We emphasize here that it is not our intention to imply that our naive heuristic is the best
or even an appropriate point of view for judging the non-informativeness of different priors
in Bayesian analysis. We only provide this argument as an interesting demonstration that
can be used in the classroom.

2 The Maximum Likelihood Estimator (MLE)

Without considering any prior opinion, a typical approach for estimating p is the method of
maximum likelihood. Let Xi be a Bernoulli random variable with P (Xi = 1) = p, P (Xi =
0) = 1− p; the log-likelihood function for the Bernoulli distribution is

l(p) =
n∑
i=1

log pxi(1− p)1−xi =
n∑
i=1

xi log p+ (1− xi) log(1− p).

We shall write x =
∑n

i=1 xi throughout the article. To maximize this log-likelihood, the first
order condition is

x

p
− n− x

1− p
= 0,

which gives

p̂mle =
x

n
.

3 The Bayesian Estimator

The Bayesian approach to estimation starts with a prior distribution on the parameter of
interest. Often, we have no prior knowledge on p. To reflect such lack of knowledge, the
most intuitive choice is to put a uniform prior on p, i.e., π0(p) = 1 for p ∈ [0, 1]. This says
that, a priori, p could be anything between 0 and 1 with equal chance. Then, the posterior

3



distribution of p is given by (Bayes’ Theorem):

π1(p|x1, ..., xn) =
f(x1, ..., xn|p)π0(p)∫ 1

0
f(x1, ..., xn|p)π0(p)dp

.

We shall find this posterior distribution more generally below using the idea of the conjugate
prior.

3.1 The Beta Conjugate Prior

Consider the Beta(α, β) distribution as the prior for p, i.e.,

π0(p) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1.

The uniform distribution is a special case of the Beta distribution, with α = β = 1. The
reason why one would consider using the Beta distribution as the prior is because the Beta
distribution and the Bernoulli distribution form a conjugate pair, so that the posterior dis-
tribution is still a Beta (e.g., DeGroot 1970). This gives us some analytic convenience. To
see this, note that

π1(p) ∝ f(x1, x2, ..., xn|p)π0(p) (2)

= px(1− p)n−xpα−1(1− p)β−1 (3)

= pα+x−1(1− p)β+n−x−1 (4)

is Beta(α+x, β+n−x). The following properties of the Beta distribution are useful: If p ∼
Beta(α, β), then

E(p) =
α

α + β
, (5)

and

Var(p) =
αβ

(α + β)2(α + β + 1)
. (6)

We can now write down a general formula for obtaining the Bayesian posterior mean, p̂bayes:
if π0(p) is Beta(α, β), then

p̂bayes =
α + x

α + β + n
. (7)

Therefore, under the uniform prior (i.e., α = β = 1), the posterior mean is

p̂bayes =
1 + x

2 + n
.
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Remark 1. For the simple purpose of demonstration, we use the posterior mean as the
Bayesian estimate. However, we emphasize that generally one could use the posterior median
or mode as a Bayesian point estimate as well.

3.2 The Effects of Different Priors

How do the parameters α and β (i.e., using different priors in the Beta family) affect the
outcome? For this discussion, we focus on a particular sub-family of Beta distributions with
α = β = c, i.e., π0(p) is Beta(c,c). Again, the uniform distribution is a member of this
sub-family, with c = 1. Furthermore, if the prior on p ∼ Beta(c, c), then

E(p) =
c

c+ c
=

1

2
and Var(p) =

c2

4c2(2c+ 1)
=

1

4(2c+ 1)
. (8)

It is clear from (7) that the prior parameter c influences the posterior mean as if an extra 2c
observations, equally split between zeros and ones, were added to the sample. Therefore, the
larger c is, the more influence the prior will have on the posterior mean. The uniform prior
(c = 1) adds two observations; Jeffrey’s prior, which according to equation (1) corresponds
to c = 1

2
, adds one extra observation. It is in this sense that Jeffrey’s prior is actually less

influential than the uniform prior.

Since the prior variance is clearly a decreasing function in c (8), this also says that the
larger the prior variance, the less influential the prior is, which makes intuitive sense: a large
prior variance would normally indicate a relatively weak prior opinion. In view of this, two
extreme cases become quite interesting: c→∞ and c→ 0.

Case 1: c → ∞. It is easy to see from (7) that as c → ∞, we have p̂bayes = 1
2
, the same

as the prior mean regardless of what the observed outcomes are. In other words, our prior
opinion of p is so strong that it can not be changed by the observed outcomes. From (8),
we see that the prior variance approaches 0 as c → ∞. This is, again, consistent with our
intuition: the small prior variance means that one’s prior belief is heavily concentrated on
the point p = 1

2
, so heavy that the observed outcomes could not alter this belief in any way.

Case 2: c→ 0. Following the same logic, it is clear from (7) that the least influential prior
in our sub-family would have been the one with c = 0. Using such a prior, the posterior
mean would have been the same as the MLE; i.e., it would have been entirely determined by
the observed outcomes. But the Beta(0,0) distribution is not defined. Therefore, we consider
the distribution Beta(ε, ε) for arbitrarily small ε > 0. To understand the behavior of this
distribution, we can examine the limiting distribution as c→ 0:

B0,0 = lim
c→0

Beta(c, c).

Theorem 1 The limiting distribution B0,0 consists of two equal point masses at 0 and 1.
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From (8), it can be seen that the variance of B0,0 is 1
4
; the above theorem (see Appendix for

a proof) is due to the following fact: for a symmetric distribution with a compact support
on the unit interval to have variance 1

4
, it must consist of just two equal point masses at 0

and 1.

Theorem 1 says that the prior distribution Beta(ε, ε) with arbitrarily small ε > 0 approaches
two point masses at 0 and 1. Such a prior belief, of course, seems extremely strong, since it
says p is essentially either 0 or 1. Intuitively, one would consider such a strong prior belief to
be extremely unreasonable, but this is the prior that would yield a posterior mean as close
as possible to the MLE. In this sense, the prior Beta(ε, ε) for arbitrarily small ε > 0, which
would otherwise appear strong, could actually be regarded as the least influential prior in
this family.

Remark 2. Theorem 1 states that the limiting distribution B0,0 is the Bernoulli(1
2
) distri-

bution, which, strictly speaking, is not a member of the Beta family. Moreover, note that if
B0,0 is actually used as a prior, then the posterior distribution is not defined unless all the
observations X1, X2, ..., Xn are identical. Therefore B0,0 is in itself quite an influential prior,
but Beta(ε, ε) is not, although for arbitrarily small ε, it encodes essentially the same prior
opinion as B0,0, whose predictive distribution puts half probability on all ones and half on
all zeros.

4 The Non-informative Prior

The lesson from this discussion is extremely interesting; it tells us that flat priors (such as
the uniform prior) are not always the same thing as non-informative priors. A seemingly
informative prior can actually be quite weak in the sense that it does not influence the
posterior opinion very much. It is clear in our example that the MLE is the result of using
a weak prior, whereas the most intuitive non-informative prior (the uniform prior) is not as
weak or non-informative as one would have thought.

We’ve also seen that the least influential prior, Beta(ε, ε) for arbitrarily small ε > 0, is also
the one with the largest variance in the sub-family, whereas the most “stubborn” prior (when
c → ∞) is also the one with the smallest variance (8). Generally, a larger variance would
also imply a flatter distribution. But since the family of Beta distributions has compact
support on the unit interval, the variance is maximized by a rather extreme prior instead of
the usual flat prior, Beta(1,1).

Remark 3. Another common prior that is used in the literature for this problem (see e.g.,
Zellner 1996, p. 40) is an improper prior of the form

π0(p) ∝ 1

p(1− p)
, (9)

also called the Haldane prior. It is improper because
∫ 1

0
π0(p)dp = ∞ and hence it is not a

proper distribution function. Zellner (1996) notes that this improper prior corresponds to
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Figure 1: The Beta family of distributions on [0, 1]. When α = β = c, the Beta distribution
is symmetric. When c = 1, it is the uniform distribution. When c > 1, it has a maximum
at 1

2
. When c < 1, it has a minimum at 1

2
and two maxima at 0 and 1.
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putting a flat prior on

η = log
p

1− p
,

the log-odds. In other words, on the log-odds scale, this improper prior is the usual flat,
non-informative prior. Other than the improperness, however, we can see that (9) is closely
related to the limiting distribution B0,0: they are two different ways of expressing the oth-
erwise undefined Beta(0,0) distribution.

Remark 4. One can use this simple heuristic in other situations as well to evaluate the
non-informativeness of different priors. For example, consider X1, X2, ..., Xn ∼ N(µ, σ2),
where σ2 is known. Let π(µ) ∼ N(θ0, σ

2
0) be the prior on µ. Then it can be shown (e.g.,

Tanner 1996, p. 17) that the posterior mean is

θ0

(
1/σ2

0

1/σ2
0 + n/σ2

)
+ x̄

(
n/σ2

1/σ2
0 + n/σ2

)
.

It is then clear that the posterior mean agrees with the MLE x̄ if and only if σ0 →∞, i.e., if
we put a prior on µ that is essentially flat. In this case, using our simple heuristic, we arrive
at the intuitive conclusion that the most non-informative prior is indeed flat.

Remark 5. In Remark 1, we emphasized that the choice to focus on the posterior mean as
the Bayesian estimate is based on convenience. The posterior Beta distribution is generally
not symmetric, so the posterior mean, median and mode do not coincide. This means some of
the phenomena illustrated above will not hold if a different posterior point estimate is used.
We do not worry about this point so much here since the material presented here is only
meant as a classroom demonstration to help the students appreciate why non-informative
priors are not always flat. However, the posterior mean, median and mode do agree for the
normal family, but of course, there the prior regarded as non-informative by the current
heuristic argument is essentially flat (see Remark 4).

5 Conclusion

That the posterior mean coincides with the MLE is not necessarily the right criterion to
judge whether a prior is non-informative, but it provides an extremely simple and effective
demonstration of why sometimes flat priors are not necessarily non-informative, while non-
informative priors are not always flat, without having to resort to deep statistical theory.
This simple argument, in our experiences, has proven relatively easy for the students to
appreciate. The proofs below in the appendix can also be easily understood with basic
statistics knowledge at the level of, say, Rice 1995. Since it is clear from this discussion
that different priors may lead to different posterior estimates, it is often desirable to report
several posterior estimates using different priors, especially when the choice of the prior is
fairly arbitrary, i.e., when there is no strong prior opinion.
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Appendix

This appendix contains a relatively simple proof of Theorem 1. Let X be a random variable
with B0,0 as its distribution; let f(x) be its probability function. Clearly f(x) is symmetric
about 1

2
. From (8), we know that Var(X) = 1

4
. Now suppose f(x) is not just two point

masses at 0 and 1. Then there exist 0 < ε < 1
2

and δ > 0 such that

g(ε) ≡
∫ 1−ε

ε

f(x)dx > δ.

Because f(x) is symmetric about 1
2
, it follows that

Var(X) =

∫ 1

0

(
x− 1

2

)2

f(x)dx

= 2

∫ ε

0

(
x− 1

2

)2

f(x)dx+

∫ 1−ε

ε

(
x− 1

2

)2

f(x)dx

≤ 2

(
0− 1

2

)2 ∫ ε

0

f(x)dx+

(
ε− 1

2

)2 ∫ 1−ε

ε

f(x)dx

=
1

2

(
1− g(ε)

2

)
+

(
ε2 − ε+

1

4

)
g(ε)

=
1

4
− ε(1− ε)g(ε)

<
1

4
− ε(1− ε)δ.

Since 0 < ε < 1
2

=⇒ ε(1 − ε) > 0 and δ > 0, this is a contradiction. Therefore f(x) must
be just two point masses at 0 and 1. The symmetry about 1

2
immediately implies that the

two point masses are equal.
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