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Abstract 
The estimation of proportions is a subject which cannot be circumvented in a first survey sampling 
course. Estimating the proportion of voters in favour of a political party, based on a political 
opinion survey, is just one concrete example of this procedure.  However, another important issue 
in survey sampling concerns the proper use of auxiliary information, which typically comes from 
external sources, such as administrative records or past surveys.  Very often, an efficient insertion 
of the auxiliary information available will improve the precision of the estimations of the mean or 
the total when a regression estimator is used.  Conceptually, it is difficult to justify using a 
regression estimator for estimating proportions.  A student might want to know how the estimation 
of proportions can be improved when auxiliary information is available.  In this article, I present 
estimators for a proportion which use the logistic regression estimator.  Based on logistic models, 
this estimator efficiently facilitates a good modelling of survey data.  The paper’s second objective 
is to estimate a proportion using various sampling plans (such as a Bernoulli sampling and 
stratified designs).  In survey sampling, each sample possesses its own probability and for a given 
unit, the inclusion probability denotes the probability that the sample will contain that particular 
unit.  Bernoulli sampling may have an important pedagogical value, because students often have 
trouble with the concept of the inclusion probability.  Stratified sampling plans may provide more 
insight and more precision.  Some empirical results derived from applying four sampling plans to a 
real data base show that estimators of proportions may be made more efficient by the proper use of 
auxiliary information and that choosing a more satisfactory model may give additional precision.  
The paper also contains computer code written in S-Plus and a number of exercises. 

1. Introduction 
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In the analysis of a survey, the response variables encountered are often discrete.  This would be 
the case for public opinion research, marketing research, and government survey research.  Take, 
for example, estimation of the employment status:  This would require the introduction of an 
indicator variable showing a value of one if the unit is employed and zero if not.  Another example 
is the estimation of the proportion of voters in favour of a presidential candidate.  In an 
introductory survey sampling course, the estimation of proportions is usually discussed from the 
perspective of various sampling plans (Kish 1965; Cochran 1977, amongst others). Later in the 
course, ratio and regression estimators are introduced.  These estimators rely on auxiliary 
information that may come from a past census or from other administrative sources.  At this point, 
a curious student might ask: “Why not use the auxiliary information to improve the estimation of a 
proportion?”  In that case, ratio and regression estimators could be proposed but, since these 
estimators are fully justified for continuous variables, they would be rather hard to motivate.  They 
are not a good choice for a variable which is discrete and typically consists of a sequence of ones 
and zeros. 

In line with the paper’s first objective, we present the logistic regression estimator proposed by 
Lehtonen and Veijanen (1998a) and which they call the LGREG estimator; it may be used to 
estimate a proportion when auxiliary information is made available.  The LGREG estimator is 
based on a logistic model which describes the joint distribution of class indicators.  Logistic 
models are sometimes introduced at the undergraduate level (see, for example, Moore and 
McCabe 1999) and at the advanced undergraduate level (see Neter, Kutner, Nachtsheim, and 
Wasserman 1996).  In survey sampling texts, they are discussed in Lohr (1999) and in Särndal, 
Swensson, and Wretman (1992).  We shall see that the discussion of logistic models allows the 
teacher to focus on the modelling of survey data.  The idea of introducing a modelling approach in 
a survey sampling course is advocated in an edited version of a panel discussion on the teaching of 
survey sampling (see Fecso, Kalsbeek, Lohr, Scheaffer, Scheuren, and Stasny 1996). 

A variety of sampling plans such as simple random sampling, stratified sampling, and cluster 
sampling are generally introduced in a first survey sampling course.  This article’s secondary 
objective is to discuss the estimation of proportions using Bernoulli (BE) sampling and stratified 
designs.  Many students find it hard to understand the concept of inclusion probability.  The BE 
sampling plan may help them see what inclusion probabilities are all about.  It is very easy to 
implement, and it may cast greater light on the random part of the sampling experiment.  In 
conjunction with the usual, simple random-sampling plan without replacement (SRS) and BE 
sampling, we shall also consider stratified designs.  Stratified sampling plans may be useful when 
the analyst needs separate estimations for different groups in the population.  An efficient 
stratification variable may also be of help in obtaining more accurate estimations, since many 
unrepresentative samples can be eliminated. 

Monte Carlo experiments may serve as empirical illustrations of several statistical concepts, such 
as the bias and variance of the estimators or the coverage properties of the confidence intervals.  
They are particularly useful when it is voluminous to enumerate all the samples in a moderate or 
large-sized population.  Simulations with four sampling plans were carried out.  The population 
under consideration in the empirical study was the 2000 Academic Performance Index (API) Base 
data file.  These data contain performance scores and ethnic and socio-economic information for 
the schools in the State of California, USA.  The data file in question may be useful for academic 
purposes, as it is publicly available and contain many variables. In our application, a natural 
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stratification variable was school type (elementary, high, middle or small).  We show that stratified 
sampling plans may give a more insightful analysis since they allow us to obtain a separate 
estimation for each school type.  Furthermore, the stratification variable helped to reduce the 
variance of the logistic regression estimator.  Our analysis shows that incorporating auxiliary 
information into a suitable model may substantially enhance the efficiency of estimating 
proportions, demonstrating that the appropriate modelling of survey data may result in more 
suitable procedures. 

2. Estimators of a Proportion Under Different 
Sampling Plans 
Let U  be a finite population.  A sample s  is obtained using a sampling design { N,,2,1 …= } U⊂ ( )⋅p .  
We denote  the first order inclusion probability of a given unit k.  The symbol “( ks∋ )k =Prπ ∋ ” 
should be read “contains”, since after the sampling plan has been executed, the random sample s 
may or may not contain unit k.  For units k and l, we let ( )lkskl ,Pr ∋=π  be the second order 
inclusion probability.  We consider the estimation of the class frequencies of a discrete random 
variable Y with possible values {0, 1}, that is we want to estimate the population proportion of 
ones using the random sample s.  We denote yk  the realization of the variable Y for the unit k and 
the quantity of interest is noted , where yTNP 1−= ∑=

U
y

UA⊆
kyT  represents the total number of ones in 

the population (In general, if A is any set of units, , then ∑A ky will be our shorthand for the 

quantity ).  Examples include unemployment rate (y∑ ∈Ak ky k = 1 if k employed, yk = 0 if not), the 
proportion of voters in favour of a presidential candidate and so on.     

2.1  Simple random sampling without replacement and Bernoulli sampling 

Several sampling plans are possible.  The more commonly used is perhaps the SRS, where each 
sample of a given size ns has the same probability, giving an inclusion probability equal to 
πk = ns/N.  Several statistical packages contain a macro or a function for obtaining an SRS sample.  
Other sampling plans are much more difficult to find.  Students sometimes have trouble 
interpreting the inclusion probability ns/N.  The reason is the following:  students in their statistics 
course too often encounter the common premise “Let  identically and 
independently distributed (iid) with mean µ  and variance σ

nXXX ,,, 21 …
2.”  Usually, the Xi‘s are the random 

variables.  However, in survey sampling, each sample s possesses its own probability, given by 
. The value of the variable of interest for the sampling unit k could be given by the numerical 

value X
( )sp

k and the random element would be whether or not unit k is included in the sample.  A 
design which is simple to implement could help the student see what is random and what is not 
random in the sample experiment.  The BE sampling plan serves well this purpose.  That sampling 
plan is discussed in Särndal, et al. (1992).  To implement the plan, it suffices to proceed in the 
following manner: 

Step 1. Let n be the expected sample size. 
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Step 2. Generate N variables independently from a uniform distribution U[0, 1].  Denote 
the values obtained as . Nuuu ,,, 21 …

Step 3. If  uk < n/N, choose unit k.  If not, do not include k in the sample. 

Step 4. Repeat step 3 for each unit in the population. 

An illustration using a real dataset of size N = 30 is given in the following example.  Note that 
much larger real population could be used in class without additional complications (using 
conventional slides or PowerPoint software for example), adding more realism to the presentation. 

Example 1 
Royal Lepage is a Canadian company that provides real estate services.  They produce annually a 
survey of Canadian housing prices.  In that survey, several specific categories of housing are 
surveyed.  For example, for Greater Montreal (in the province of Quebec), the housing values of 
executive, detached two-storey houses for July 2002 are described in Table 1.  The prices are in 
Canadian dollars (CAN$). 
 

 
 
Table 1.  Values of the executive, detached two-story houses for Greater Montreal in July 2002. 
 

k City Price 
1 Ahuntsic 229000
2 Beaconsfield 275000
3 Beloeil 152000
4 Blainville 314000
5 Boucherville 205000
6 Chomedey 212000
7 Cote-St-Luc 475000
8 Dorval 157000
9 Duvernay 243000

10 Fabreville 169800
11 Hudson 245000
12 Kirkland 198000
13 Lachine 189000
14 Lasalle 175000
15 Lorraine 309000
16 Montreal West 360000
17 Mount Royal 370000
18 Notre-Dame-De-Grace 375000
19 Outremont 600000
20 Pierrefonds 138000
21 Pointe Claire 290000
22 Rosemere 338000
23 St-Bruno-De-Montarville 235000
24 St-Eustache 250000
25 St-Lambert 300000
26 St-Laurent 250000

 4



27 Ste-Therese 255000
28 Terrebonne 165000
29 Vimont 259000
30 Westmount 758000

 
 

 
For example, an executive, detached two-storey house in Dorval would be worth 157,000 CAN$.  
However, the same house located in Westmount would cost 758,000 CAN$.  This kind of database 
allows us to compare real estate prices according to location.  Suppose that we draw a sample from 
that population using BE sampling.  In the step 1, we set the expected sample size n = 14, which 
gives an expected sampling fraction equal to n/N = 14/30 = 46.6%.  For step 2 in obtaining a BE 
sample, we generate uniform random variables using the S-Plus function runif().  To illustrate 
our discussion, three samples are chosen from that population.  
 
> set.seed(1) # Fix the seed 
> round(runif(30), digits=3) # Commands for the first sample 
 [1] 0.163 0.425 0.317 0.646 0.084 0.083 0.203 0.978 0.439 0.272 0.968 0.788 
[13] 0.021 0.908 0.904 0.559 0.373 0.798 0.385 0.818 0.525 0.857 0.492 0.348 
[25] 0.117 0.216 0.572 0.807 0.859 0.955 
> round(runif(30), digits=3) # Commands for the second sample 
 [1] 0.913 0.922 0.863 0.210 0.548 0.472 0.772 0.068 0.052 0.384 0.613 0.404 
[13] 0.224 0.151 0.560 0.061 0.099 0.937 0.270 0.620 0.275 0.411 0.617 0.570 
[25] 0.001 0.586 0.323 0.326 0.335 0.465 
> round(runif(30), digits=3) # Commands for the third sample 
 [1] 0.273 0.998 0.056 0.037 0.127 0.032 0.287 0.968 0.003 0.866 0.160 0.353 
[13] 0.398 0.703 0.951 0.375 0.220 0.090 0.328 0.512 0.710 0.170 0.437 0.376 
[25] 0.984 0.676 0.660 0.355 0.127 0.339 
 
In Table 2, the columns labelled “uk” give the realizations of the uniform random variables for 
each unit in the population and the additional columns labelled “Included?” indicate whether or 
not unit k is included in the sample. 
 

 
 
Table 2.  Three BE samples for the housing data. 
 

k City Price uk Included? uk Included? uk Included?
1 Ahuntsic 229000 0.163 Yes 0.913 No 0.273 Yes 
2 Beaconsfield 275000 0.425 Yes 0.922 No 0.998 No 
3 Beloeil 152000 0.317 Yes 0.863 No 0.056 Yes 
4 Blainville 314000 0.646 No 0.210 Yes 0.037 Yes 
5 Boucherville 205000 0.084 Yes 0.548 No 0.127 Yes 
6 Chomedey 212000 0.083 Yes 0.472 No 0.032 Yes 
7 Cote-St-Luc 475000 0.203 Yes 0.772 No 0.287 Yes 
8 Dorval 157000 0.978 No 0.068 Yes 0.968 No 
9 Duvernay 243000 0.439 Yes 0.052 Yes 0.003 Yes 

10 Fabreville 169800 0.272 Yes 0.384 Yes 0.866 No 
11 Hudson 245000 0.968 No 0.613 No 0.160 Yes 
12 Kirkland 198000 0.788 No 0.404 Yes 0.353 Yes 
13 Lachine 189000 0.021 Yes 0.224 Yes 0.398 Yes 
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14 Lasalle 175000 0.908 No 0.151 Yes 0.703 No 
15 Lorraine 309000 0.904 No 0.560 No 0.951 No 
16 Montreal West 360000 0.559 No 0.061 Yes 0.375 Yes 
17 Mount Royal 370000 0.373 Yes 0.099 Yes 0.220 Yes 
18 Notre-Dame-De-Grace 375000 0.798 No 0.937 No 0.090 Yes 
19 Outremont 600000 0.385 Yes 0.270 Yes 0.328 Yes 
20 Pierrefonds 138000 0.818 No 0.620 No 0.512 No 
21 Pointe Claire 290000 0.525 No 0.275 Yes 0.710 No 
22 Rosemere 338000 0.857 No 0.411 Yes 0.170 Yes 
23 St-Bruno-De-Montarville 235000 0.492 No 0.617 No 0.437 Yes 
24 St-Eustache 250000 0.348 Yes 0.570 No 0.376 Yes 
25 St-Lambert 300000 0.117 Yes 0.001 Yes 0.984 No 
26 St-Laurent 250000 0.216 Yes 0.586 No 0.676 No 
27 Ste-Therese 255000 0.572 No 0.323 Yes 0.660 No 
28 Terrebonne 165000 0.807 No 0.326 Yes 0.355 Yes 
29 Vimont 259000 0.859 No 0.335 Yes 0.127 Yes 
30 Westmount 758000 0.955 No 0.465 Yes 0.339 Yes 

 
 

 
More specifically, for steps 3 and 4, each number in the column “uk” is compared with 0.466 and a 
unit k is chosen if uk  < 0.466, k = 1, … ,30.  The resulting samples, s1, s2, and s3 are given by:  s1 = 
{1, 2, 3, 5, 6, 7, 9, 10, 13, 17, 19, 24, 25, 26};  s2 = {4, 8, 9, 10, 12, 13, 14, 16, 17, 19, 21, 22, 25, 
27, 28, 29, 30};  s3 = {1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 28, 29, 30}. 

Since the N experiments are independent and using the basic property of the uniform distribution, 
the inclusion probability of the sampling unit k is clearly n/N.  The student may appreciate that 
some samples contain a given unit k while others not, and that the inclusion probability 
corresponds to the chances that the sample s contains the fixed unit k.  The instructor may wish to 
stress the fact that what is random is the sample s and that the Yk ‘s are not random quantities.  
From one sample to the next, what is random is the inclusion of a given unit in the sample.  For 
example, from the Example 1, the unit Ahuntsic (k = 1) is included in the first and third samples 
but not in the second.  However, the price of an house in Ahuntsic is the fixed real number  y1 = 
229,000. 

By comparison, to illustrate the inclusion probability under the SRS design, the instructor would 
need a more elaborate illustration, based either on a long enumeration of all the samples (or on 
many samples) and on the idea of the Monte Carlo simulation (which is presented later in the 
course).  Based on BE sampling, the requirements seem minimal.  Additional technical exercises 
on small populations are naturally useful in understanding inclusion probabilities (Särndal, et al. 
1992; Lohr 1999).  Our illustration with BE sampling represents an intuitive complement, without 
the exasperation of calculations.  Note that a generalization of BE sampling, called Poisson (PO) 
sampling, could possibly be useful in illustrating plans with unequal inclusion probabilities.  To 
apply a PO design, the sampler needs to specify the πk ’s .  He then proceeds as in the BE design, 
except that he replaces step 3 with the following: 

Step 3’. If  uk < πk , choose unit k.  If not, do not include k in the sample. 
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The πk ’s correspond to the inclusion probabilities. When Nnk ≡π , Uk∈∀ , we retrieve the BE 
sampling plan.  A natural question is how to choose the πk ’s.  If x is a positive auxiliary variable, 
available for each unit k in the population, a possible choice consists in specifying: 

∑
=

U k

k
k x

nxπ . 

For the estimation of the population mean or the population total, it is known that if the variable of 
interest y is proportional to the auxiliary variable x, then that choice of the πk ’s will give a small 
variance for certain estimators of the total Ty .  The PO design falls somewhat beyond the scope of 
the present paper and we refer the reader to Särndal, et al. (1992) for more details on this particular 
sampling plan.   

We should note that with BE sampling, the sample size of s, say ns, could differ from the planned 
or expected size .  Indeed, a possible drawback of BE sampling is that the sample size is 
a random quantity.  Thus, in 

( ) nnE s =
Example 1, the expected sample size was n = 14 and the final sample 

sizes of s1, s2 and s3 were 14, 17 and 20, respectively.  For some samplers, this represents a serious 
disadvantage.  For others, it is of little importance, since in practice, due to possible non-response, 
the final sample size will be probably different of the planned sample size.  According Särndal 
(1996), we should not consider BE design inferior because of the random sample size.  In his 
paper, he mentions several successful applications of sampling plans and strategies (a strategy is a 
combination of an estimator and a sampling plan) with random sample size.  From a pedagogical 
point of view, the successful illustration of the inclusion probability largely compensates for the 
random sample size. 

We shall now discuss the point estimation of P.  Under SRS sampling, the natural unbiased 
estimator is the sampling proportion, that is 

∑=
s k

s
s y

n
P 1 , 

where ns is the fixed planned size.  For BE sampling, an unbiased estimator is 

s
s

s k
s

s
s kBEs P

n
n

y
nn

n
y

n
P === ∑∑ 11 , 

where ns is now the final random sample size.  In the following example, we compute point 
estimators of P with the BE samples taken from Example 1. 

Example 2 
Consider the housing data described in Example 1.  Suppose that we are interested in estimating 
the proportion of regions in Greater Montreal such that the price of an executive, detached two-
storey house is higher than 260,000 CAN$.  Note that according to Table 1 the true unknown 
proportion is P = 12/30 = 40%.  We need to introduce the following dichotomous variable y: 
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yk   = 1, if the price of the house for region k is higher than 260,000 CAN$, 
= 0, if not. 

 
Recall that the expected sample size is n = 14 and the final sample sizes are given by 14

1
=sn , 

 and .  From 17
2
=sn 20

3
=sn Table 2, we obtain that 5

1
=∑s ky , 8

2
=∑s ky  and ∑ .  

Consequently, the point estimations for the estimator P

8
3

=
s ky

BEs are given in the Table 3. 
 

 
 
Table 3.  Point estimators based on the three samples considered in Example 1. 
 

 s1 S2 s3 
PBEs 5/14=35.7% 8/14=57.1% 8/14=57.1% 

 
 

 
At first look, the point estimators in Table 3 may seem counterintuitive for the students.  They may 
find that the sample proportions %7.35145

1
==sP , %1.47178

2
==sP  and %0.4020/8

3
==sP  

are more natural estimators.  Furthermore, it seems intuitively that the sample proportions are 
closer to the population proportion P!  However, the estimator PBEs is exactly an unbiased 
estimator of P, when the sample comes from a BE sampling plan.  This illustrates that the form of 
the estimator may be affected by the sampling plan.  The apparent large variations of the 
estimators in Table 3 are explained in part by the fixed denominator n of the estimator PBEs.  It can 
be shown that a better estimator than PBEs for the estimation of the proportion P is precisely the 
sample proportion Ps, even if the sample is obtained according to the BE sampling plan.  Though 
slightly biased, this estimator does exhibit less variability.  Replacing n by the random size ns in 
the denominator of PBEs reduces the part of the variability related to the sample size variation.  
Another example and a discussion are given in Särndal, et al. (1992).  

The estimators and  are unbiased estimators for the true proportion P, under SRS and BE 
sampling plans, respectively.  They are special cases of the general Horvitz-Thompson (HT) 
estimator.  That estimator is a key quantity in 

sP BEsP

Särndal, et al. (1992).  The HT estimator allows us 
to obtain unbiased estimators when the sample comes from a general sampling plan  taken in a 
finite population U.  The general formula for the HT estimator for the total is 

( )⋅p

∑U ky

∑=
s kkps yT π . 

The variance of Tps is given by ( ) ( )( )∑∑ ∆=
U llkkklpsp yyT ππV , where ∆  and πlkklkl πππ −= kk = 

πk .  An unbiased estimator of ( )psp TV  is ( ) ( )( )( )lly πV  (see Särndal, et al. 

1992).  The HT estimator for the proportion P is noted ∑=
s kkps y

N
P π1 .  The associated 

variance estimator is given by ( ) ( )( )( )∑∑ ∆= −
s llkkklkl yyN πππ2

psp PV̂ .     

∑∑ ∆=
s kkklklpsp yT ππˆ
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In the SRS sampling plan, V  reduces to the formula ( psSRS Tˆ ) ( ) 22 1
ys

s
Sn

fN − , which is usually derived 

in a first course, with ( −
s skys yyS 22 )

k

∑−
=

sn 1
1  and where the sampling fraction is f=ns/N.  Using 

the property that y  is either 0 or 1, we deduce that the estimator of variance for reduces to sP

( ) ( ) ( )ss
s

psSRS PPn
fPV −−

−= 11
1ˆ .   

For BE sampling, the formula is even simpler, since πkl = πkπl  for lk ≠ .  A valid variance 
estimator for PBEs is then given after some algebraic manipulations by: 

( ) s
s

s k
kk

BEsBE P
n
n

N
n

n
yNPV 










−=








−= ∑− 11111ˆ 22

ππ
. 

If the sampling distribution of Pps  is approximately normal,  this allows us to construct a 
confidence interval for P having the familiar form 

)(ˆ
2;1 pspnps PVtP α−± , 

where 2;1 α−nt  is the (1- 2α )th quantile of a Student t distribution with n-1 degrees of freedom.  
For large n, we can replace 2;1 α−nt  by the (1- 2α )th quantile zα/2 of a normal distribution.  With 

%5=α , such confidence intervals should contain the true parameter P around 95% of the time.  
For SRS sampling plan, the adequacy of the normal approximation for a general variable of 
interest y will depend on the sample size and on how closely the population U resembles a 
population generated from the normal distribution.  See also Lohr (1999), who presents an 
interesting discussion on confidence intervals in finite population sampling problems.  In 
estimating proportion P, the usual rule  and 5≥nP ( ) 51 ≥−Pn  is a useful guideline in deciding 
whether the sample size is large enough to use the normal approximation.  Cochran (1977) 
discusses the validity of the normal approximation of the sample proportion under SRS design. 

Example 3 
In Example 2, we computed point estimators.  We can now provide the variance estimators of  
for the three samples obtained under the BE design in the 

BEsP
Example 1.  Using the results given in 

the Example 2, the variance estimators ( )BEsBE PV̂  for the samples s1, s2 and s3 are 2/147, 16/735 
and 16/735, respectively. It might seem tempting to use the point and variance estimators to 
produce confidence intervals.  However, it seems that the sample size and the population size are 
rather small.  For illustrative purposes, we set %5=α , giving a quantile equal to t .  
Consequently, the confidence intervals for these three samples are [0.11, 0.61], [0.25, 0.89] and 
[0.25, 0.89], at the 95% confidence level.  These intervals are quite large, reflecting the variability 
of the estimator . 

16.2%5.2,13 =

BEsP
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2.2 Stratified sampling with SRS and BE sampling plans 

Sometimes the population can be naturally divided into H groups, called strata.  Common 
variables of stratification are regions, geographic areas, etc.  At the stratum level, the sample sh is 
obtained by drawing in stratum h, h=1,2, …, H, a sample of size nhs independently in each stratum 
of size Nh.  For example, we could consider using the SRS sampling plan in each stratum to select 

sh, h=1,2, … ,H;  the resulting sample at the population level is .  This sampling design is 

called the stratified simple random sampling, noted STSRS.  Another possibility is to draw in each 
stratum h a random sample using BE sampling.  We denote the stratified Bernoulli sampling 
STBE.  Such sampling plans are considered in 

∪
H

h
hss

1=

=

Särndal (1996). 

Under STSRS, a natural unbiased estimator is given by , where Whs

H

h
hsst PWP ∑

=

=
1

, h=Nh/N is the 

proportion of units in stratum h and ∑=
hs k

hs
hs y

n
P 1  is the sample proportion in stratum h.  

Essentially  consists of a weighted average of the proportions in each stratum.  Since we draw 
samples independently in each stratum, the variance of  is the weighted sum of the variance 
inside each stratum.  An unbiased estimator for the variance of  is given by 

sstP ,

( )

sstP ,

sstP ,

(∑
=

−
−H

h
hshs

hs
h P

n
W

1

2 1
1 )

−
h P

f
1

, where hhsh Nnf = . 

The same reasoning holds for STBE.  As an exercise, we propose finding an unbiased estimator of 

the variance of , where BEhs

H

h
hsstBE PWP ∑

=

=
1

, ∑=
hs k

h
BEhs y

n
P 1  and nh is the expected sample size in 

stratum h.  (The answer is ( ) ∑
=

=
H

h
s W

1
, 








− hs

h

hs

h

h

h
h Pn

n
N
n

n
2 11

stBEstBE PV̂ ). 

In fact, we should note that  and  are the HT estimators under STSRS and STBE 
respectively.  The inclusion probabilities under STSRS and STBE are given by π

sstP , sstBEP ,

k = nhs/Nh and πk 
= nh/Nh , respectively, when the sampling unit k lies in stratum h.   

3.  The Logistic Regression Estimator 
Auxiliary information is often available in survey sampling.  This information, which may come 
from past census or from other administrative sources, can be used to obtain more accurate 
estimators.  When auxiliary information is made available, we might still decide to execute a SRS 
sampling plan, but we would want to change the estimation method.  There are other choices 
available for making use of auxiliary information, such as the ratio estimator or the regression 
estimator.  For example, to estimate the total Ty, we could decide to replace the strategy HT/SRS 
by the regression estimator with an SRS design: 

 10



( ){ }sUsyREG xxByNT −+= ˆˆ , 

which is approximately unbiased for the true total Ty.  The underlying model is the simple 
regression model with an intercept and the slope estimator is given by B̂ .  More generally, in a 
multiple regression model , the general regression estimator (called GREG) is given 
by: 

kky ε+= βx'
k

( )∑∑ −+=
s kkUyGREG yT πs

'
ks

'
k BxBx ˆˆˆ , 

where ( ) ∑∑ −
=

s kks ks y ππ k
'
kk xxxB 1ˆ .   

The usual estimators for a proportion usually cannot incorporate auxiliary information.  A student 
might ask why not try to improve the estimation of the HT estimator for the proportion with a 
certain estimator function of the xk’ s.  However, the regression estimator is fully justified when 
the variable of interest is continuous.  Since the variable Y is dichotomous when we estimate a 
proportion, it may be more natural to consider a logistic model for the population, where it is 
assumed that {  is known.  For a given x}Ukk ∈,x k , the model is given by: 

( ) ( )
( )βx
βx
'
k

'
k

exp1
exp1Pr
+

==kY , 

and Pr( Yk = 0 ) = 1- Pr( Yk = 1 ).  The parameter  is estimated by the following HT estimator of 
the log-likelihood: 

β

( ) ( ) ( )[ ]∑ =+−==
s kkkkk YIYIL πµµ log11log0)(β , 

where ( ) ( βxβx ,1Pr, kkkkk YYE ===µ ) and ( )AI  is the indicator variable for set A.  See also the 
logistic model described in Särndal, et al. (1992) and Lohr (1999).  The predicted values for the 

kµ ’s are given by )ˆ,1Pr(ˆ βx kkk Y ==µ , k N,,2,1 …= .  To obtain the LGREG estimator of 

Lehtonen and Veijanen (1998a), we need only replace the linear prediction  of  ysk Bx ˆ' k  in the 
GREG by kµ̂ : 

( )∑∑ −+=
s kkkU kyLGREG yT πµµ ˆˆˆ . 

For a discrete variable Y, the LGREG estimator is more natural than the GREG estimator since in 
the logistic formulation kµ  lies between 0 and 1 and the predicted value kµ̂  also shares that 
property.  However, we should note that the GREG estimator might need only the population 
totals of the auxiliary information.  By comparison, the LGREG estimator usually requires more 
knowledge of the xk ’s in the population U.  For more details on that specific aspect, see Lehtonen 
and Veijanen (1998a).   
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The LGREG estimator may be useful in constructing an estimator for a proportion P by 
considering .  It is possible to compute the LGREG estimator under a general sampling 
plan  including stratified sampling plans such as STSRS or STBE.  In these cases, it is natural 
to consider LGREG estimators separately in each stratum, since we assume that the auxiliary 
information {  is totally known. 

yLGREGTN ˆ1−

Ukk ∈,x

( )⋅p

}

From a pedagogical point of view, a first sampling course is too often composed of the following 
routine: quantity of interest - estimator - variance of the estimator - estimator of the variance.  
Regression and ratio estimators are introduced as more accurate estimators when the auxiliary 
information is used efficiently.  However, perhaps more emphasis should be placed on the 
underlying linear model, since it is the only one considered with that kind of estimator.  At this 
point, students may not yet realize why the implicit modelling of the survey data is so important.  
The LGREG is an example of an estimator justified with logistic models.  These models could be 
introduced as another type of model—providing motivation for the LGREG estimators, 
highlighting the underlying justification of the different estimators, and stressing the appropriate 
modelling of observed and available data.  Logistic models may help students understand the 
underlying dichotomous variables.  In some circumstances a linear model is adequate, but in some 
other cases (for example, with dichotomous variables) a logistic model may be preferable.  In 
some sense, logistic models constitute a specialized topic.  They could, however, be introduced at 
the end of a first course in survey sampling or at the beginning of a second course on the subject, 
whereas regression estimators are usually introduced earlier.  The LGREG estimator seems to have 
good pedagogical merits and it may be useful in teaching with a modelling approach, which is 
suggested in Fecso, et al. (1996). 

Variance estimation remains an important consideration for the practical applications.  A possible 
variance estimator for T  discussed in yLGREG

ˆ Lehtonen and Veijanen (1998a) is given by the 
following formula: 

( )( )( )llkks klklpLGREG eeV πππ∑∑ ∆=,
ˆ , 

where e kkk Y µ̂−= .  That formula takes the same form that the variance estimator V  for the HT 
estimator.  It is also similar to the linearized variance estimator for the GREG estimator (

p
ˆ

Särndal, 
et al. 1992).  We conclude this section with an exercise that is an application of the results 
obtained in Section 2.   

Exercise: Find the variance estimators for the LGREG estimator under the sampling plan a) SRS, 
b) BE, c) STSRS and d) STBE. 

Answer to the exercise:   

a) Let us begin under the SRS sampling plan.  Using a common trick, it suffices to realize that 
the same algebraic developments will occur with the variable e instead of a general variable 
y.  Note that the residual ek is not dichotomous.  Recall that the variance estimator for the HT 
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estimator of a general variable y under SRS reduces to 22 1
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b) Under BE, the variance estimator of the HT estimator is the expression  
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d) Under STBE, the variance estimator of the HT estimator ∑ ∑
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3.1 Computing the LGREG estimator 

In the logistic model, estimating the parameter  represents an important step.  In general, the 
model is estimated by maximizing the weighted log-likelihood.  A Newton-Raphson algorithm 
could be used to maximize the likelihood function numerically.  See 

β

Lehtonen and Veijanen 
(1998b) for more numerical details.  We developed some S-Plus codes to compute the LGREG 
estimator.  In the more general case the inclusion probabilities might be unequal.  In that situation 
we could use the general S-Plus function nlminb.  With SRS and BE sampling plans, the 
inclusion probabilities are all equal.  In that case we can use the built-in function multinom 
coming from the nnet library created by W.N.Venables and B. Ripley and described in their 
book (Venables and Ripley 1994).  The library is included with the professional edition of S-Plus 
2000 for Windows.  For STSRS and STBE designs, we can use multinom in each stratum.  In 
our simulations, multinom was much more faster than nlminb.  We provide below some S-
Plus codes.  The first function computes the LGREG estimator and the second is useful in 
obtaining the log-likelihood.  All the codes for reproducing the simulation results of the next 
section can be obtained by communicating with the author. 
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LGREG <- 
function(beta, echan, y.s, X, pik) 
{ 
# beta: vector that corresponds to the estimator of beta 
# echan: corresponds to the indices for the sample 
# y.s: values of variable y for s;  y[echan] is y.s 
# X: matrix of auxiliary information for the whole population 
# We assume a general sampling design. 
 N <- length(X[, 1]) # Size of the population 
 n <- length(y.s) # Sample size 
 z.s <- ifelse(y.s == 1, 1, 0) 
 weight <- 1/pik 
 xbeta <- as.vector(X %*% beta) 
 den <- 1 + exp(xbeta) # den is a vector of size N 
 predict1 <- exp(xbeta)/den 
 That1 <- sum(predict1) + sum(weight * (z.s - predict1[echan])) 
 e.s <- z.s - predict1[echan] 
 list(That1 = That1, e.s = e.s) 
} 
 
loglik.LGREG <-  
function(beta, y = y, X = X, pik = pik) 
{ 
# Computation of the loglikelihood 
 weight <- 1/pik 
 z0 <- ifelse(y == 0, 1, 0) 
 z1 <- ifelse(y == 1, 1, 0) 
 xbeta <- as.vector(X %*% beta) 
 den <- 1 + exp(xbeta) 
 predict0 <- 1/den 
 predict1 <- exp(xbeta)/den 
 term0 <- z0 * log(1 - predict1) 
 term1 <- z1 * log(predict1) 
 - sum(weight * (term0 + term1)) 
} 

4.  Application with the Academic 
Performance Index Base Datafile 
Two topics that may be covered at the end of a first course in sampling theory are random number 
generation and the Monte Carlo simulation.  This is often one of the first contacts students will 
have with pseudo-random numbers and random number generation via the inverse transformation 
of the distribution function.  The Monte Carlo simulation serves to illustrate many fundamental 
issues, such as the probability concept of convergence and the statistical concepts of bias, variance 
and confidence interval.  As a technique it is particularly useful when the exact description of an 
estimator’s sampling distribution is rather difficult to obtain.  Ideally, if all the samples s that are 
possible under a certain sampling plan were obtained, then one could determine the exact bias of 
an estimator or the exact confidence level of a certain procedure.  However, this is often a task of 
enormous proportions, since the number of possible s increases rapidly as a function of N.  To 
perform a Monte Carlo simulation in our context, we draw B samples independently from a certain 
population, where each sample s is obtained according to the sampling design .  The number ( )⋅p
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of replications B must be taken reasonably large, for example we could use B = 1000.  Then, we 
use each sample to compute certain estimators and/or confidence intervals for the parameter of 
interest.  For example, to appreciate empirically the bias of the estimator  of the true proportion 
P, it suffices to compute the Monte Carlo mean of the B estimators 

P̂

∑ =

B

i 1
−

iPB 1 ˆ , where  

represents the estimator  calculated at the ith replication; the Monte Carlo bias is given by 
.  This involves the law of large number, since according to that probability result 

 converges to 

iP̂

P̂
PPB B

i i −∑ =
−

1
1 ˆ

∑ =
− B

i iPB
1

1 ˆ ( )P̂E  in probability.    By computing the Monte Carlo variance of the B 
estimators, we may also study the variability of the estimators.  Another possible application of the 
Monte Carlo simulation is to help the students appreciate the meaning of a confidence interval, by 
examining its coverage properties empirically.  It suffices to compute B confidence intervals based 
on the B samples and to count the number of times that the true proportion P belongs to the B 
confidence intervals.  Furthermore, since the confidence intervals are justified with asymptotic 
arguments, the students will have the opportunity to observe whether the coverage rates are close 
to the asymptotic confidence level 1-α in finite samples.  See also Särndal, et al. (1992), who 
describe a complete Monte Carlo experiment. 

More specifically, the Monte Carlo experiments in this section will help to illustrate the properties 
of the estimators considered in this paper, particularly the coverage properties of the confidence 
intervals and some efficiency considerations as well (for example, reduction of the variance 
stemming from auxiliary information; adequate modelling; and choice of the sampling plan).  We 
carried out the simulations from the 2000 Academic Performance Index Base data file.  In the 
State of California, the 1999 Public Schools Accountability Act requires that the Department of 
Education calculate the API every year: The API is a performance indicator (on a scale of 200 to 
1000) for public schools.  Schools are ranked, and the results are published and made available to 
the public.  Performance scores are particularly important for schools in California, since rewards 
are granted if annual API growth targets are reached.  For 2000, the API consists solely of results 
from the Stanford 9 norm-referenced assessment.  Documents describing the 2000 API are 
available from the California Department of Education, and the API Base data file can be 
downloaded  from the Internet at the California Department of Education web site. 

The original database contains 7367 schools, but 174 of these did not receive a 2000 API score.  
For our simulation study, we simply removed these schools, leaving a database consisting of 7193 
schools.  When a school contains a sub-group with a given characteristic (ethnic or socio-
economic) accounting for more that 15% of the total pupil population and consists of at least 30 
pupils—or if 100 pupils with valid Stanford 9 scores have the given characteristic—then that sub-
group is said to be numerically significant.  Assume that, for a given socio-economic study, we 
need to conduct a survey to find an estimator for the proportion of schools with a significant socio-
economically disadvantaged (SD) sub-group.  Suppose that from an external source, we have at 
our disposal some auxiliary information.  That information consists of the 2000 API score 
(variable API00) and the percentage of students tested who are also participants in the free or 
reduced-price lunch program (variable MEALS).  It seems natural to include that kind of 
information in a model studying a variable related to socio-economic issues.  In estimating the 
logistic model, we considered the variables ( )API00log  and MEALS/100.  The logarithm was 
taken to reduce the order of magnitude for the API00 variable; and the MEALS variable in the 
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original database is expressed as a percentage.  Our example is fictitious but it serves the purposes 
behind our Monte Carlo experiment based on the real information in the API Base data file. 

At this point, the instructor could challenge his students with some of the following questions: 

1. Should we use the HT estimator in this problem? 
 

2. What should be the impact of the auxiliary information on the point estimators, the 
variances and the confidence intervals? 
 

3. Is the regression estimator appropriate in this situation? 
 

4. What should be the impact of the sampling plan on the variances of the estimators? 
 

5. From a modeller’s perspective, why is the logistic regression estimator more satisfactory?  
Would we gain any benefits in choosing a better model?  What kind of benefits? 

To see if some benefits can be obtained, a Monte Carlo study is conducted to investigate 
empirically the accuracy of the confidence intervals when auxiliary information is included in the 
estimation of proportions.  In the first experiment, one thousand samples of size n=1800 were 
independently drawn with the SRS and BE sampling plans (with n as the expected sample size for 
BE) to estimate the proportion P.  That sample size gives a sampling fraction of about 25%. 

In the second experiment, we assume that, prior to the survey, it will be possible to identify the  
type for each  school. Stratification according to school type will allow us to obtain separate 
estimations for each category: Elementary, High, Middle, and Small.  A small school has between 
11 and 99 pupils with valid Stanford 9 test scores.  Summary information of the auxiliary 
information is given in Table 4.  We observe that the API scores are quite similar among the 
school types.  However, on average, it seems that the percentage of students tested who are also 
participants in the free or reduced program is lower in high schools when compared with the 
average at the population level of the MEALS variable.  The size of the strata were N1 = 4779, N2 
= 854, N3 = 1125, and N4 = 435, respectively. As in the first experiment, we considered a total 
sample size of 1800 which we allocate proportionally as n1 = 1196, n2 = 214, n3 = 281 and n4 = 
109.  The proportional allocation is often sufficient for the estimation of a proportion, since the 
gain of optimal allocation over proportional allocation is usually small (Kish 1965; Cochran 
1977). 

 
 
Table 4.  Summary of the auxiliary information. 
 

 API00 MEALS 
 Mean Variance Mean Variance 
Population level 664.3 (16308.6) 47.6 (924.0) 
Elementary 671.6 (17044.2) 51.8 (958.5) 
High 634.2 (11613.6) 30.9 (565.5) 
Middle 655.3 (15435.9) 44.1 (752.2) 
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Small 666.5 (17234.7) 43.7 (914.1) 

 

Based on these samples, we calculated confidence intervals for P using the HT estimator under 
SRS and BE sampling plans.  The confidence intervals are given by 
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respectively.  For the LGREG estimators, the confidence intervals under the sampling plans SRS 
and BE are 
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respectively, where e kkk Y µ̂−= .  The preceding formulas are appropriate for constructing 
confidence intervals at the population level or in a particular stratum (in the latter case it suffices 
to replace U by Uh, N by Nh, n by nh and finally, ns by nsh).  Under a stratified design, we can also 
calculate confidence intervals at the population level, by combining the estimations in each 
stratum.  For the HT estimator, the confidence interval under the STSRS design is given by 
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For the LGREG estimators, the confidence intervals under STSRS and STBE are 
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respectively, where T  represents the LGREG estimator in stratum h.  All the formulas for 
the estimators and the variance estimators are reproduced in the Appendix of the paper.  The 
GREG estimator is also included in our study.  The confidence intervals are similar to the 
confidence intervals of the LGREG estimator, if one replaces 

yhLGREG
ˆ

kµ̂  by x  and the residuals are 

computed as 
sk B̂'

sk Bx ˆ'kk Ye~ −= .   The true values for the unknown parameters of interest at the 
population level and at the stratum level are given in Table 5.  We note a large difference between 
small schools and the other schools.  This may be partly related to the fact that, because of the 30-
pupils rule, no subgroup will be numerically significant for a very small school (less than 30 
pupils).  That variable should therefore be interpreted with great caution.  However, from a 
practical point of view, it may be useful to have separate estimations for each strata.  In this 
example, the small proportion of significant SD sub-group for small schools was naturally hidden 
at the population level. 

 

Table 5.  True values of the parameters of interest.    

 True proportion 
Population level 5772/7193 = 80.24% 
Elementary 3956/4779 = 82.78% 
High 712/854 = 83.37% 
Middle 963/1125 = 85.60% 
Small 141/435 = 32.41% 

 

For an estimator , we noted P̂ ( )PEMC
ˆ  the Monte Carlo mean and ( )PMC

ˆvar  the Monte Carlo 

variance.  The Monte Carlo mean of the estimators of variance is given by ( )VMC
ˆE .  Finally, the 

empirical coverage rates of the confidence interval of the form 21
2V̂zα±P̂ are given in the CR 

column.  With 1000 samples, acceptable values are in the interval [93.65%, 96.35%]. 

The results of the first experiment are presented in Table 6.  All the estimators of P had a slight 
bias, and the mean of the variance estimators was reasonably close to the Monte Carlo variance.  
All the confidence intervals had empirical coverage rates close to the nominal level, and all the 
values were in the interval [93.65%, 96.35%].  The LGREG estimator was more efficient than the 
HT estimator.  Under the SRS sampling plan, since 6.6102/2.5631 = 2.58, in our experiment the 
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LGREG was much more efficient than the HT estimator.  This illustrates the merits of an estimator 
that can take advantage of the auxiliary information available.  The GREG seems unbiased for the 
true total, but it is less efficient than the LGREG estimator.  This illustrates the robustness 
property of the GREG estimator, since even if the model is misspecified, the regression estimator 
remains unbiased and the variance estimator formula is still valid.  These empirical results show 
that the GREG estimator is model assisted, but not model dependent (Särndal, et al. 1992).  
However, a substantial reduction of variance is possible with the LGREG estimator, illustrating 
that a linear regression model was not appropriate for these data.   

The HT estimator under BE sampling was less efficient than under the SRS design.  It is a well 
known fact that the HT estimator may suffer of a variance penalty when the sample size is random 
(Särndal, et al. 1992). Interestingly, in our experiment, there is no variance penalty when a variable 
sample size is used with LGREG or GREG estimators, since the Monte Carlo variances under SRS 
or BE designs were similar.  The sample mean (sample variance) of the final sample size for BE 
sampling was 1801.66 (1318.53).   

 

Table 6. Results of the first experiment. 

 SRS sampling plan 
 ( )PEMC

ˆ  ( )PMC
ˆvar  (*) ( )VEMC

ˆ  (*) CR 

HT 80.27% 6.6102 6.5964 95.4% 
GREG 80.24% 4.2942 4.3509 96.0% 
LGREG 80.23% 2.5631 2.6249 95.5% 
 
 BE sampling plan 
 ( )PEMC

ˆ  ( )PMC
ˆvar  (*) ( )VEMC

ˆ  (*) CR 

HT 80.33% 32.367 33.460 95.1% 
GREG 80.27% 4.3433 4.3552 95.5% 
LGREG 80.25% 2.5375 2.6256 95.4% 
     

* column ×  510−

 

In Table 6, only results at the population level could be computed, since, in our experiments, the 
SRS and BE sampling plans did not incorporate the school type as an auxiliary variable.  With 
stratified designs, estimations are calculated at the population level and also for each school type.  
The results of the second experiment are presented in Table 7.  First we study the estimation of the 
proportion at the population level.  We observe that including school type as a stratification 
variable gave a lower variance for the LGREG estimator.  If we compare the SRS and STSRS 
sampling plans, we observe that the gain in efficiency is 2.5631/1.2492 = 2.05.  In our experiment, 
we see that the gain was more modest when we compare the SRS/HT and STSRS/HT strategies.    
The GREG estimator was still less efficient than the LGREG estimator.  When the HT/BE and 
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HT/STBE strategies are compared, it appears that stratification did not improve the estimation.  
The sample means (sample variances) of the final sample size under STBE for each stratum were 
1197.20 (852.54), 214.28 (184.63), 281.23 (218.67) and 108.94 (85.09).  The confidence intervals 
had empirical coverage rates close to the nominal level and all the values were in the interval 
[93.65%, 96.35%].   

Second, we study the estimation of the proportions at the stratum level.  It seems that we obtained 
more accurate results for the LGREG estimator, particularly in the stratum consisting of 
Elementary schools, since the reduction of variance for STSRS is 8.4534/1.0179 = 8.30.  It does, 
however, seem that the coverage rates were slightly below the nominal coverage rate, particularly 
for Middle schools.  This is related to the fact that the estimators of variance seem to 
underestimate the true variance in that stratum; indicating that the confidence interval is too 
narrow.  A similar behaviour has been reported in Lehtonen and Veijanen (1998a).  The LGREG 
estimator was more efficient than the GREG estimator in each stratum, except for the small 
schools where it was slightly less efficient.  Under STBE sampling with LGREG estimator, 
spectacular variance reductions were obtained, particularly in Elementary and Middle strata. The 
LGREG/STBE and LGREG/STSRS strategies gave very similar results. 

 

Table 7. Results of the second experiment. 

 STSRS sampling plan 
 ( )PEMC

ˆ  ( )PMC
ˆvar  (*) ( )VEMC

ˆ  (*) CR 

HT, pop level 80.27% 5.8346 5.9836 95.0% 
GREG, pop level 80.28% 3.6950 3.6499 94.0% 
LGREG, pop level 80.25% 1.2492 1.1217 93.8% 
     
HT, Elem school 82.82% 8.4534 8.9202 95.0% 
GREG, Elem school 82.82% 4.9456 5.0862 95.1% 
LGREG, Elem school 82.77% 1.0179 0.9138 93.8% 
     
HT, High school 83.34% 45.942 48.698 94.8% 
HT. High school 83.38% 34.726 35.341 94.1% 
LGREG, High school 83.41% 19.257 17.185 93.6% 
     
HT, Middle school 85.58% 33.267 32.972 95.3% 
GREG, Middle school 85.61% 22.423 22.038 95.4% 
LGREG, Middle school 85.59% 5.114 4.268 90.1% 
     
HT, Small school 32.50% 144.615 151.227 95.1% 
GREG, Small school 32.52% 96.588 100.472 94.2% 
LGREG, Small school 32.50% 101.114 101.644 93.4% 
 
 STBE sampling plan 
 ( )PEMC

ˆ  ( )PMC
ˆvar  (*) ( )VEMC

ˆ  (*) CR 

HT, pop level 80.32% 33.786 33.460 94.6 
GREG, pop level 80.29% 3.2108 3.6472 96.2 
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LGREG, pop level 80.26% 1.1539 1.1105 93.7 
     
HT, Elem school 82.87% 51.826 51.951 94.8 
GREG, Elem school 82.82% 4.5150 5.0959 96.2 
LGREG, Elem school 82.79% 0.9393 0.9043 94.5 
     
HT, High school 83.54% 337.10 292.55 92.4 
GREG, High school 83.49% 34.668 35.162 94.5 
LGREG, High school 83.39% 17.775 17.050 93.9 
     
HT, Middle school 85.55% 247.98 228.41 93.9 
GREG, Middle school 85.57% 22.438 22.069 94.4 
LGREG, Middle school 85.59% 5.1460 4.2775 90.3 
     
HT, Small school 32.49% 215.498 223.352 95.3 
GREG, Small school 32.57% 99.343 99.069 94.0 
LGREG, Small school 32.57% 100.416 100.168 94.3 
 
* column ×  510−

 

To summarize, our analysis of the Monte Carlo experiments allows us to answer the typical 
questions asked above. 

1. The HT estimator remained appropriate, since it provided an unbiased estimator of the true 
proportion.  However, since auxiliary information was made available, much lower 
variances were obtained with an estimator that makes efficient use of the available 
variables. 
 

2. The auxiliary information helped to reduce the variance of the estimators.  While all the 
estimators were unbiased or approximately unbiased, the GREG estimators and LGREG 
estimators showed less variability than the HT estimator and the confidence intervals were 
more precise for the same level of confidence. 
 

3. Since the regression estimator is model assisted and not model dependent, the estimators of 
variance for the GREG estimators were valid and the coverage properties were  rather close 
to the nominal confidence level.  However, a linear regression model is hard to motivate 
with discrete data. 
 

4. The empirical variance of the HT estimator was higher under BE sampling than under SRS 
sampling.  Interestingly, the differences in efficiency between these two designs were 
smaller for the GREG and LGREG estimators.  This suggests that the auxiliary information 
compensated for the random sample size. With stratified sampling plans, more precise 
estimations at the population level were generally observed, since many unrepresentative 
samples had been eliminated with an appropriate stratification variable.  Furthermore, 
stratified designs offered the possibility of obtaining separate estimations for each stratum. 
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5. Conceptually, the logistic model seemed more satisfactory since the underlying variable is 
dichotomous.  The LGREG estimator proved more efficient than the GREG estimator in 
our experiments, that is the former estimator usually generated lower variances than the 
latter. 

5. Conclusion 
The estimation of proportions is an important subject with many practical applications.  In a first 
survey sampling course, auxiliary information is an important topic and the ordinary sample mean 
or estimated total can be improved with the general regression estimator, since it is capable of 
incorporating the auxiliary information.  However, regression estimators are more suitably used 
for continuous variables.  In estimating a proportion, we might also want to incorporate auxiliary 
information. In this paper, we demonstrated how this could be done with the logistic regression 
estimator, which is based on a logistic model.  It is more natural to motivate the use of a logistic 
model for a discrete variable.  We also discussed different sampling plans, such as Bernoulli’s, 
which might have interesting pedagogical merits.  We further considered stratified sampling plans 
whose usefulness resides in their capacity to compute a separate estimation for each stratum.  
Furthermore, in many situations, an efficient stratification variable may be of help in obtaining 
accurate estimations.  In the simulation section, we use a real database to show that smaller 
variances might be obtained with the logistic regression estimator than with the HT estimator or 
with the classical regression estimator.  In our empirical study, the LGREG estimator gave 
accurate estimations under various sampling plans, but the best results were observed using 
stratified designs.  In conclusion, when estimating a proportion, the use of auxiliary information 
may give large gains in efficiency and the choice of an appropriate model may lead to smaller 
variances.  When the time comes to discuss the modelling of survey data, it would seem that 
instructors may find logistic models and the LGREG estimator to be of great help. 
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