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Abstract

The estimation of proportions is a subject which cannot be circumvented in a first survey sampling
course. Estimating the proportion of voters in favour of a political party, based on a political
opinion survey, is just one concrete example of this procedure. However, another important issue
in survey sampling concerns the proper use of auxiliary information, which typically comes from
external sources, such as administrative records or past surveys. Very often, an efficient insertion
of the auxiliary information available will improve the precision of the estimations of the mean or
the total when a regression estimator is used. Conceptually, it is difficult to justify using a
regression estimator for estimating proportions. A student might want to know how the estimation
of proportions can be improved when auxiliary information is available. In this article, I present
estimators for a proportion which use the logistic regression estimator. Based on logistic models,
this estimator efficiently facilitates a good modelling of survey data. The paper’s second objective
is to estimate a proportion using various sampling plans (such as a Bernoulli sampling and
stratified designs). In survey sampling, each sample possesses its own probability and for a given
unit, the inclusion probability denotes the probability that the sample will contain that particular
unit. Bernoulli sampling may have an important pedagogical value, because students often have
trouble with the concept of the inclusion probability. Stratified sampling plans may provide more
insight and more precision. Some empirical results derived from applying four sampling plans to a
real data base show that estimators of proportions may be made more efficient by the proper use of
auxiliary information and that choosing a more satisfactory model may give additional precision.
The paper also contains computer code written in S-Plus and a number of exercises.

1. Introduction


http://www.amstat.org/v11n3/duchesne.pdf

In the analysis of a survey, the response variables encountered are often discrete. This would be
the case for public opinion research, marketing research, and government survey research. Take,
for example, estimation of the employment status: This would require the introduction of an
indicator variable showing a value of one if the unit is employed and zero if not. Another example
is the estimation of the proportion of voters in favour of a presidential candidate. In an
introductory survey sampling course, the estimation of proportions is usually discussed from the
perspective of various sampling plans (Kish 1965; Cochran 1977, amongst others). Later in the
course, ratio and regression estimators are introduced. These estimators rely on auxiliary
information that may come from a past census or from other administrative sources. At this point,
a curious student might ask: “Why not use the auxiliary information to improve the estimation of a
proportion?” In that case, ratio and regression estimators could be proposed but, since these
estimators are fully justified for continuous variables, they would be rather hard to motivate. They
are not a good choice for a variable which is discrete and typically consists of a sequence of ones
and zeros.

In line with the paper’s first objective, we present the logistic regression estimator proposed by
Lehtonen and Veijanen (1998a) and which they call the LGREG estimator; it may be used to
estimate a proportion when auxiliary information is made available. The LGREG estimator is
based on a logistic model which describes the joint distribution of class indicators. Logistic
models are sometimes introduced at the undergraduate level (see, for example, Moore and
McCabe 1999) and at the advanced undergraduate level (see Neter, Kutner, Nachtsheim, and
Wasserman 1996). In survey sampling texts, they are discussed in Lohr (1999) and in Sérndal,
Swensson, and Wretman (1992). We shall see that the discussion of logistic models allows the
teacher to focus on the modelling of survey data. The idea of introducing a modelling approach in
a survey sampling course is advocated in an edited version of a panel discussion on the teaching of
survey sampling (see Fecso, Kalsbeek, Lohr, Scheaffer, Scheuren, and Stasny 1996).

A variety of sampling plans such as simple random sampling, stratified sampling, and cluster
sampling are generally introduced in a first survey sampling course. This article’s secondary
objective is to discuss the estimation of proportions using Bernoulli (BE) sampling and stratified
designs. Many students find it hard to understand the concept of inclusion probability. The BE
sampling plan may help them see what inclusion probabilities are all about. It is very easy to
implement, and it may cast greater light on the random part of the sampling experiment. In
conjunction with the usual, simple random-sampling plan without replacement (SRS) and BE
sampling, we shall also consider stratified designs. Stratified sampling plans may be useful when
the analyst needs separate estimations for different groups in the population. An efficient
stratification variable may also be of help in obtaining more accurate estimations, since many
unrepresentative samples can be eliminated.

Monte Carlo experiments may serve as empirical illustrations of several statistical concepts, such
as the bias and variance of the estimators or the coverage properties of the confidence intervals.
They are particularly useful when it is voluminous to enumerate all the samples in a moderate or
large-sized population. Simulations with four sampling plans were carried out. The population
under consideration in the empirical study was the 2000 Academic Performance Index (API) Base
data file. These data contain performance scores and ethnic and socio-economic information for
the schools in the State of California, USA. The data file in question may be useful for academic
purposes, as it is publicly available and contain many variables. In our application, a natural



stratification variable was school type (elementary, high, middle or small). We show that stratified
sampling plans may give a more insightful analysis since they allow us to obtain a separate
estimation for each school type. Furthermore, the stratification variable helped to reduce the
variance of the logistic regression estimator. Our analysis shows that incorporating auxiliary
information into a suitable model may substantially enhance the efficiency of estimating
proportions, demonstrating that the appropriate modelling of survey data may result in more
suitable procedures.

2. Estimators of a Proportion Under Different
Sampling Plans

Let U ={1 12N } be a finite population. A sample scU is obtained using a sampling design p()
We denote =, =Pr(sak) the first order inclusion probability of a given unit k. The symbol “>”

should be read “contains”, since after the sampling plan has been executed, the random sample s
may or may not contain unit k. For units k and /, we let z,=Pr(s>k,/) be the second order

inclusion probability. We consider the estimation of the class frequencies of a discrete random
variable Y with possible values {0, 1}, that is we want to estimate the population proportion of
ones using the random sample s. We denote y; the realization of the variable Y for the unit £ and

the quantity of interest is noted P=N-'T , where szu v, represents the total number of ones in
the population (In general, if 4 is any set of units, AcU , then ZA v, will be our shorthand for the
quantity zkeA ¥, ). Examples include unemployment rate (y, = 1 if k employed, y; = 0 if not), the

proportion of voters in favour of a presidential candidate and so on.

2.1 Simple random sampling without replacement and Bernoulli sampling

Several sampling plans are possible. The more commonly used is perhaps the SRS, where each
sample of a given size n, has the same probability, giving an inclusion probability equal to

m =ny/N. Several statistical packages contain a macro or a function for obtaining an SRS sample.
Other sampling plans are much more difficult to find. Students sometimes have trouble
interpreting the inclusion probability ny/N. The reason is the following: students in their statistics

course too often encounter the common premise “Let X, ,X,,..., X, identically and

independently distributed (iid) with mean y and variance o°.” Usually, the X;s are the random
variables. However, in survey sampling, each sample s possesses its own probability, given by
p(s). The value of the variable of interest for the sampling unit & could be given by the numerical

value X} and the random element would be whether or not unit £ is included in the sample. A
design which is simple to implement could help the student see what is random and what is not
random in the sample experiment. The BE sampling plan serves well this purpose. That sampling
plan is discussed in Sédrndal, et al. (1992). To implement the plan, it suffices to proceed in the
following manner:

Step 1. Let n be the expected sample size.



Step 2.

Step 3.

Step 4.

Generate N variables independently from a uniform distribution U[0, 1]. Denote

the values obtained as u,,u,,...,u, .

If uy <n/N, choose unit k. If not, do not include % in the sample.

Repeat step 3 for each unit in the population.

An illustration using a real dataset of size N = 30 is given in the following example. Note that
much larger real population could be used in class without additional complications (using
conventional slides or PowerPoint software for example), adding more realism to the presentation.

Example 1

Royal Lepage is a Canadian company that provides real estate services. They produce annually a
survey of Canadian housing prices. In that survey, several specific categories of housing are
surveyed. For example, for Greater Montreal (in the province of Quebec), the housing values of
executive, detached two-storey houses for July 2002 are described in Table 1. The prices are in
Canadian dollars (CANS).

Table 1. Values of the executive, detached two-story houses for Greater Montreal in July 2002.

k City Price

1 Ahuntsic 229000
2 Beaconsfield 275000
3 Beloeil 152000
4 Blainville 314000
5 Boucherville 205000
6 Chomedey 212000
7 Cote-St-Luc 475000
8 Dorval 157000
9 Duvernay 243000
10 Fabreville 169800
11 Hudson 245000
12 Kirkland 198000
13 Lachine 189000
14 Lasalle 175000
15 Lorraine 309000
16 Montreal West 360000
17 Mount Royal 370000
18 Notre-Dame-De-Grace 375000
19 Outremont 600000
20 Pierrefonds 138000
21 Pointe Claire 290000
22 Rosemere 338000
23 St-Bruno-De-Montarville 235000
24 St-Eustache 250000
25 St-Lambert 300000
26 St-Laurent 250000



27 Ste-Therese 255000

28 Terrebonne 165000
29 Vimont 259000
30 Westmount 758000

For example, an executive, detached two-storey house in Dorval would be worth 157,000 CANS.
However, the same house located in Westmount would cost 758,000 CANS$. This kind of database
allows us to compare real estate prices according to location. Suppose that we draw a sample from
that population using BE sampling. In the step 1, we set the expected sample size n = 14, which
gives an expected sampling fraction equal to n/N = 14/30 = 46.6%. For step 2 in obtaining a BE
sample, we generate uniform random variables using the S-Plus function runif (). To illustrate
our discussion, three samples are chosen from that population.

> set.seed(l) # Fix the seed

> round (runif (30), digits=3) # Commands for the first sample

[1] 0.163 0.425 0.317 0.646 0.084 0.083 0.203 0.978 0.439 0.272 0.968 0.788
[13] 0.021 0.908 0.904 0.559 0.373 0.798 0.385 0.818 0.525 0.857 0.492 0.348
[25] 0.117 0.216 0.572 0.807 0.859 0.955
> round (runif (30), digits=3) # Commands for the second sample

[1] 0.913 0.922 0.863 0.210 0.548 0.472 0.772 0.068 0.052 0.384 0.613 0.404
[13] 0.224 0.151 0.560 0.061 0.099 0.937 0.270 0.620 0.275 0.411 0.617 0.570
[25] 0.001 0.586 0.323 0.326 0.335 0.465
> round (runif (30), digits=3) # Commands for the third sample

[1] 0.273 0.998 0.056 0.037 0.127 0.032 0.287 0.968 0.003 0.866 0.160 0.353
[13] 0.398 0.703 0.951 0.375 0.220 0.090 0.328 0.512 0.710 0.170 0.437 0.376
[25] 0.984 0.676 0.660 0.355 0.127 0.339

In Table 2, the columns labelled “u;” give the realizations of the uniform random variables for
each unit in the population and the additional columns labelled “Included?” indicate whether or
not unit £ is included in the sample.

Table 2. Three BE samples for the housing data.

k City Price i Included? i Included? i Included?
1 Ahuntsic 229000 0.163 Yes 0913 No 0.273 Yes
2 Beaconsfield 275000  0.425 Yes 0.922 No 0.998 No
3 Beloeil 152000 0.317 Yes 0.863 No 0.056 Yes
4 Blainville 314000 0.646 No 0.210 Yes 0.037 Yes
5 Boucherville 205000 0.084 Yes 0.548 No 0.127 Yes
6 Chomedey 212000 0.083 Yes 0.472 No 0.032 Yes
7 Cote-St-Luc 475000 0.203 Yes 0.772 No 0.287 Yes
8 Dorval 157000  0.978 No 0.068 Yes 0.968 No
9 Duvernay 243000 0.439 Yes 0.052 Yes 0.003 Yes
10 Fabreville 169800  0.272 Yes 0.384 Yes 0.866 No
11 Hudson 245000  0.968 No 0.613 No 0.160 Yes
12 Kirkland 198000  0.788 No 0.404 Yes 0.353 Yes
13 Lachine 189000  0.021 Yes 0.224 Yes 0.398 Yes



14 Lasalle 175000  0.908 No 0.151 Yes 0.703 No

15 Lorraine 309000  0.904 No 0.560 No 0.951 No
16 Montreal West 360000  0.559 No 0.061 Yes 0.375 Yes
17 Mount Royal 370000 0.373 Yes 0.099 Yes 0.220 Yes
18 Notre-Dame-De-Grace 375000  0.798 No 0.937 No 0.090 Yes
19 Outremont 600000  0.385 Yes 0.270 Yes 0.328 Yes
20 Pierrefonds 138000  0.818 No 0.620 No 0.512 No
21 Pointe Claire 290000  0.525 No 0.275 Yes 0.710 No
22 Rosemere 338000 0.857 No 0411 Yes 0.170 Yes
23 St-Bruno-De-Montarville 235000 0.492 No 0.617 No 0.437 Yes
24 St-Eustache 250000  0.348 Yes 0.570 No 0.376 Yes
25 St-Lambert 300000 0.117 Yes 0.001 Yes 0.984 No
26 St-Laurent 250000 0.216 Yes 0.586 No 0.676 No
27 Ste-Therese 255000 0.572 No 0.323 Yes 0.660 No
28 Terrebonne 165000  0.807 No 0.326 Yes 0.355 Yes
29 Vimont 259000  0.859 No 0.335 Yes 0.127 Yes
30 Westmount 758000  0.955 No 0.465 Yes 0.339 Yes

More specifically, for steps 3 and 4, each number in the column “u;” is compared with 0.466 and a
unit k is chosen if u;y <0.466, k=1, ... ,30. The resulting samples, s, 52, and s3 are given by: s; =
{1,2,3,5,6,7,9,10, 13,17, 19, 24, 25, 26}; s»={4,8,9, 10, 12, 13, 14, 16, 17, 19, 21, 22, 25,
27,28,29,30}; s3=1{1,3,4,5,6,7,9,11,12,13,16, 17, 18, 19, 22, 23, 24, 28, 29, 30}.

Since the N experiments are independent and using the basic property of the uniform distribution,
the inclusion probability of the sampling unit & is clearly n/N. The student may appreciate that
some samples contain a given unit k£ while others not, and that the inclusion probability
corresponds to the chances that the sample s contains the fixed unit k. The instructor may wish to
stress the fact that what is random is the sample s and that the Y} ‘s are not random quantities.
From one sample to the next, what is random is the inclusion of a given unit in the sample. For
example, from the Example 1, the unit Ahuntsic (k= 1) is included in the first and third samples
but not in the second. However, the price of an house in Ahuntsic is the fixed real number y; =
229,000.

By comparison, to illustrate the inclusion probability under the SRS design, the instructor would
need a more elaborate illustration, based either on a long enumeration of all the samples (or on
many samples) and on the idea of the Monte Carlo simulation (which is presented later in the
course). Based on BE sampling, the requirements seem minimal. Additional technical exercises
on small populations are naturally useful in understanding inclusion probabilities (Sdrndal, et al.
1992; Lohr 1999). Our illustration with BE sampling represents an intuitive complement, without
the exasperation of calculations. Note that a generalization of BE sampling, called Poisson (PO)
sampling, could possibly be useful in illustrating plans with unequal inclusion probabilities. To
apply a PO design, the sampler needs to specify the 7, ’s . He then proceeds as in the BE design,
except that he replaces step 3 with the following:

Step 3°. If ux < m , choose unit k. If not, do not include £ in the sample.



The 7 s correspond to the inclusion probabilities. When z,=n/N, VkeU , we retrieve the BE

sampling plan. A natural question is how to choose the 7 ’s. If x is a positive auxiliary variable,
available for each unit & in the population, a possible choice consists in specifying:

_ "

T,= .
k
Zka

For the estimation of the population mean or the population total, it is known that if the variable of
interest y is proportional to the auxiliary variable x, then that choice of the 7 ’s will give a small
variance for certain estimators of the total 7}, . The PO design falls somewhat beyond the scope of
the present paper and we refer the reader to Sirndal, et al. (1992) for more details on this particular
sampling plan.

We should note that with BE sampling, the sample size of s, say n,, could differ from the planned
or expected size £ (ns ) =n. Indeed, a possible drawback of BE sampling is that the sample size is

a random quantity. Thus, in Example 1, the expected sample size was n = 14 and the final sample
sizes of 51, 57 and s3 were 14, 17 and 20, respectively. For some samplers, this represents a serious
disadvantage. For others, it is of little importance, since in practice, due to possible non-response,
the final sample size will be probably different of the planned sample size. According Séarndal
(1996), we should not consider BE design inferior because of the random sample size. In his
paper, he mentions several successful applications of sampling plans and strategies (a strategy is a
combination of an estimator and a sampling plan) with random sample size. From a pedagogical
point of view, the successful illustration of the inclusion probability largely compensates for the
random sample size.

We shall now discuss the point estimation of 2. Under SRS sampling, the natural unbiased
estimator is the sampling proportion, that is

1
P, :Zzsyk >

where #; is the fixed planned size. For BE sampling, an unbiased estimator is

1 n, 1 n
P, =— N == p,
BEs nzsyk _— zsyk PR
where 7, is now the final random sample size. In the following example, we compute point
estimators of P with the BE samples taken from Example 1.

Example 2

Consider the housing data described in Example 1. Suppose that we are interested in estimating
the proportion of regions in Greater Montreal such that the price of an executive, detached two-
storey house is higher than 260,000 CANS$. Note that according to Table 1 the true unknown
proportion is P = 12/30 = 40%. We need to introduce the following dichotomous variable y:



vi =1, if the price of the house for region £ is higher than 260,000 CANS,
=0, if not.

Recall that the expected sample size is n = 14 and the final sample sizes are given by n =14,
n, =17 and n,=20. From Table 2, we obtain that ZS »,=5, ZS »,=8 and zs y,=8.

Consequently, the point estimations for the estimator Pzg, are given in the Table 3.

Table 3. Point estimators based on the three samples considered in Example 1.

S1 Sz S3

Pgis 5/14=35.7% 8/14=57.1% 8/14=57.1%

At first look, the point estimators in Table 3 may seem counterintuitive for the students. They may
find that the sample proportions P, =5/14=35.7%, P, =8/17=47.1% and P, =8/20=40.0%

are more natural estimators. Furthermore, it seems intuitively that the sample proportions are
closer to the population proportion P! However, the estimator Ppg, is exactly an unbiased
estimator of P, when the sample comes from a BE sampling plan. This illustrates that the form of
the estimator may be affected by the sampling plan. The apparent large variations of the
estimators in Table 3 are explained in part by the fixed denominator » of the estimator Ppg,. It can
be shown that a better estimator than Pgg, for the estimation of the proportion P is precisely the
sample proportion Py, even if the sample is obtained according to the BE sampling plan. Though
slightly biased, this estimator does exhibit less variability. Replacing n by the random size n,in
the denominator of Pggs reduces the part of the variability related to the sample size variation.
Another example and a discussion are given in Sirndal, et al. (1992).

The estimators B and Py, are unbiased estimators for the true proportion P, under SRS and BE

sampling plans, respectively. They are special cases of the general Horvitz-Thompson (HT)
estimator. That estimator is a key quantity in Sérndal, et al. (1992). The HT estimator allows us
to obtain unbiased estimators when the sample comes from a general sampling plan p() taken in a

finite population U. The general formula for the HT estimator for the total ZU Vi 18

Tps :ZSJ’k/”k .

The variance of 7, is given by Vp(I;S )=ZZUAkl(yk/ﬂ-k \y,/7,), where A, =z, — 7,7, and my =
7. An unbiased estimator of VP(TPS) is VP(TPS ):Zzs(Akl/ﬂHka/ﬂ'k \y,/7,) (see Sirndal, et al.

1992). The HT estimator for the proportion P is noted P, = % ZS Vi / 7, . The associated

variance estimator is given by VP(I;S }N 72225(&1/@1 /7 )v/7,).



In the SRS sampling plan, VSRS(T s ) reduces to the formula N 2£—zSyzY , which is usually derived

in a first course, with S yzs = Zs (y K = Vs )2 and where the sampling fraction is f=ny/N. Using

n, —1

the property that yy is either 0 or 1, we deduce that the estimator of variance for P reduces to

I}SRS(PPS )=£,11:—f211(1—12 ) .

For BE sampling, the formula is even simpler, since 7m; = mm for k # /. A valid variance
estimator for P 1s then given after some algebraic manipulations by:

1 n |n
V =N E ——1 —|1-——|=P.
BES ( ] n( N]n *

If the sampling distribution of P, is approximately normal, this allows us to construct a
confidence interval for P having the familiar form

f;?s n— la/ZVV(P )

where 7, ., is the (1-@/2)th quantile of a Student ¢ distribution with n-1 degrees of freedom.
For large n, we can replace 7, , ,, by the (1-&/2)th quantile z,, of a normal distribution. With

a=5% , such confidence intervals should contain the true parameter P around 95% of the time.
For SRS sampling plan, the adequacy of the normal approximation for a general variable of
interest y will depend on the sample size and on how closely the population U resembles a
population generated from the normal distribution. See also Lohr (1999), who presents an
interesting discussion on confidence intervals in finite population sampling problems. In
estimating proportion P, the usual rule nP>5 and n(l—P)ZS is a useful guideline in deciding
whether the sample size is large enough to use the normal approximation. Cochran (1977)
discusses the validity of the normal approximation of the sample proportion under SRS design.

Example 3

In Example 2, we computed point estimators. We can now provide the variance estimators of Py,
for the three samples obtained under the BE design in the Example 1. Using the results given in
the Example 2, the variance estimators V,, (P, ) for the samples s, s, and s3 are 2/147, 16/735
and 16/735, respectively. It might seem tempting to use the point and variance estimators to
produce confidence intervals. However, it seems that the sample size and the population size are
rather small. For illustrative purposes, we set @=5%, giving a quantile equal to ¢, ,=2.16.

Consequently, the confidence intervals for these three samples are [0.11, 0.61], [0.25, 0.89] and
[0.25, 0.89], at the 95% confidence level. These intervals are quite large, reflecting the variability

of the estimator Py, .



2.2 Stratified sampling with SRS and BE sampling plans

Sometimes the population can be naturally divided into H groups, called strata. Common
variables of stratification are regions, geographic areas, etc. At the stratum level, the sample s, is
obtained by drawing in stratum 4, h=1,2, ..., H, a sample of size n;, independently in each stratum
of size N,. For example, we could consider using the SRS sampling plan in each stratum to select

H
sn, h=1,2, ... ,H; the resulting sample at the population level is SZUSh . This sampling design is
h=1
called the stratified simple random sampling, noted STSRS. Another possibility is to draw in each
stratum / a random sample using BE sampling. We denote the stratified Bernoulli sampling
STBE. Such sampling plans are considered in Sérndal (1996).

H
Under STSRS, a natural unbiased estimator is given by P, = z W, P, ,where W,=N,/N is the
h=1
. o 1 . L
proportion of units in stratum 4 and P, = —zs ¥, 1s the sample proportion in stratum 4.

hs

Essentially P, = consists of a weighted average of the proportions in each stratum. Since we draw

t,s

samples independently in each stratum, the variance of P,  is the weighted sum of the variance

t,s

inside each stratum. An unbiased estimator for the variance of P, is given by

st,s
H
w?
h
h=1

(l_fhl)Phs(l_Phs)a where fh :nhs/Nh :
n,

Al

The same reasoning holds for STBE. As an exercise, we propose finding an unbiased estimator of

Z 1
the variance of P, = ZW,,PBE,” , where P, = —Z v, and ny; is the expected sample size in
> - - n Sh

h=1 h

P 2 Ty | Mg
stratum 4. (The answer is VS,BE(PY,BES)=ZW,1 —— 1 |-=PB).
e om0 N,

In fact, we should note that P, and P,  are the HT estimators under STSRS and STBE

st,s

respectively. The inclusion probabilities under STSRS and STBE are given by 7, = n,s/N;, and 7
= ny/Ny , respectively, when the sampling unit £ lies in stratum 4.

3. The Logistic Regression Estimator

Auxiliary information is often available in survey sampling. This information, which may come
from past census or from other administrative sources, can be used to obtain more accurate
estimators. When auxiliary information is made available, we might still decide to execute a SRS
sampling plan, but we would want to change the estimation method. There are other choices
available for making use of auxiliary information, such as the ratio estimator or the regression
estimator. For example, to estimate the total 7}, we could decide to replace the strategy HT/SRS
by the regression estimator with an SRS design:

10



j:vyREG = N{J_’s + l}()_CU - )_Cs )}’

which is approximately unbiased for the true total 7;. The underlying model is the simple
regression model with an intercept and the slope estimator is given by B. More generally, in a
multiple regression model y, = x, B+ &, , the general regression estimator (called GREG) is given
by:

7’:'yGREG = ZUX;(ES +zs(yk _X;(ﬁs) ﬂ-k H
where ]§S=(stkx;(/7zk lesxk V7 -

The usual estimators for a proportion usually cannot incorporate auxiliary information. A student
might ask why not try to improve the estimation of the HT estimator for the proportion with a
certain estimator function of the x;’s. However, the regression estimator is fully justified when
the variable of interest is continuous. Since the variable Y is dichotomous when we estimate a
proportion, it may be more natural to consider a logistic model for the population, where it is
assumed that {x HkeU } is known. For a given x , the model is given by:

L exp(x;(ﬁ)
Pr(Y, = 1)_mx;(_ﬁ)’

and Pr( Yx=0) = 1- Pr( Y;,=1). The parameter f is estimated by the following HT estimator of
the log-likelihood:

L(B) = z logl :uk)+1( —l)logyk]/ﬂk,

where 1, = E(Yk |xk , ) Pr( = 1|xk , ) and I(A4) is the indicator variable for set 4. See also the
logistic model described in Sirndal, et al. (1992) and Lohr (1999). The predicted values for the
u, s are given by i, =Pr(Y, = l‘xk,f}) , k=12,...,N . To obtain the LGREG estimator of

Lehtonen and Veijanen (1998a), we need only replace the linear prediction x', ]ABS of yx in the
GREG by 4, :

fyLGREG = ZU/:lk +25(J’k -4, )/”k .

For a discrete variable Y, the LGREG estimator is more natural than the GREG estimator since in
the logistic formulation x, lies between 0 and 1 and the predicted value £, also shares that
property. However, we should note that the GREG estimator might need only the population
totals of the auxiliary information. By comparison, the LGREG estimator usually requires more

knowledge of the x;’s in the population U. For more details on that specific aspect, see Lehtonen
and Veijanen (1998a).

11



The LGREG estimator may be useful in constructing an estimator for a proportion P by
considering N~'T \worec - 1t 18 possible to compute the LGREG estimator under a general sampling

plan p() including stratified sampling plans such as STSRS or STBE. In these cases, it is natural
to consider LGREG estimators separately in each stratum, since we assume that the auxiliary
information {x,,k € U} is totally known.

From a pedagogical point of view, a first sampling course is too often composed of the following
routine: quantity of interest - estimator - variance of the estimator - estimator of the variance.
Regression and ratio estimators are introduced as more accurate estimators when the auxiliary
information is used efficiently. However, perhaps more emphasis should be placed on the
underlying linear model, since it is the only one considered with that kind of estimator. At this
point, students may not yet realize why the implicit modelling of the survey data is so important.
The LGREG is an example of an estimator justified with logistic models. These models could be
introduced as another type of model—providing motivation for the LGREG estimators,
highlighting the underlying justification of the different estimators, and stressing the appropriate
modelling of observed and available data. Logistic models may help students understand the
underlying dichotomous variables. In some circumstances a linear model is adequate, but in some
other cases (for example, with dichotomous variables) a logistic model may be preferable. In
some sense, logistic models constitute a specialized topic. They could, however, be introduced at
the end of a first course in survey sampling or at the beginning of a second course on the subject,
whereas regression estimators are usually introduced earlier. The LGREG estimator seems to have
good pedagogical merits and it may be useful in teaching with a modelling approach, which is
suggested in Fecso, et al. (1996).

Variance estimation remains an important consideration for the practical applications. A possible
variance estimator for Yi;LGR +c discussed in Lehtonen and Veijanen (1998a) is given by the

following formula:
I}LGREG,p = z ZS (Akl /7y )(ek /7, )(el /7, )=

where e, =Y, — 1, . That formula takes the same form that the variance estimator I}p for the HT

estimator. It is also similar to the linearized variance estimator for the GREG estimator (Sérndal,
et al. 1992). We conclude this section with an exercise that is an application of the results
obtained in Section 2.

Exercise: Find the variance estimators for the LGREG estimator under the sampling plan a) SRS,
b) BE, ¢) STSRS and d) STBE.

Answer to the exercise:
a) Letus begin under the SRS sampling plan. Using a common trick, it suffices to realize that

the same algebraic developments will occur with the variable e instead of a general variable
y. Note that the residual ey is not dichotomous. Recall that the variance estimator for the HT
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estimator of a general variable y under SRS reduces to N° (HJS +. where
né

1

S? =
®oon, -1

ZS (v, —»,) is the sampling variance. Then for the LGREG estimator the

lzs(ek _Es)z .

b) Under BE, the variance estimator of the HT estimator is the expression

Z L(L - lj yi = E[ﬁ - ljz y; . For the LGREG estimator, the formula is
’ 7z n\n ’

1

n —

N

formula is simply N z(ﬂj&i , where S =
ns

T \ 7%k
N(N
——=1 e’ .
MR

H
c) Under STSRS, the variance estimator of the HT estimator Z N,y, 1s given by

h=1

N; f”)S yzb , where f, =n, /N, . Forthe LGREG, the expression becomes

i (l_fh)Sz

es, °
h=1 Mg

H
d) Under STBE, the variance estimator of the HT estimator Z%Zb Vv, 18
h=1 "t "

AN, (N .
Z—”(—” - I]ZS y: . For the LGREG estimator, the formula reduces to

=t My \ T,

LN, N
Z_h(_h_lJz e}
w=t My, \ T, Y

3.1 Computing the LGREG estimator

In the logistic model, estimating the parameter f represents an important step. In general, the
model is estimated by maximizing the weighted log-likelihood. A Newton-Raphson algorithm
could be used to maximize the likelihood function numerically. See Lehtonen and Veijanen
(1998b) for more numerical details. We developed some S-Plus codes to compute the LGREG
estimator. In the more general case the inclusion probabilities might be unequal. In that situation
we could use the general S-Plus function n1minb. With SRS and BE sampling plans, the
inclusion probabilities are all equal. In that case we can use the built-in function multinom
coming from the nnet library created by W.N.Venables and B. Ripley and described in their
book (Venables and Ripley 1994). The library is included with the professional edition of S-Plus
2000 for Windows. For STSRS and STBE designs, we can use multinom in each stratum. In
our simulations, multinom was much more faster than n1minb. We provide below some S-
Plus codes. The first function computes the LGREG estimator and the second is useful in
obtaining the log-likelihood. All the codes for reproducing the simulation results of the next
section can be obtained by communicating with the author.
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LGREG <-
function (beta, echan, y.s, X, pik)

{

# beta: vector that corresponds to the estimator of beta

# echan: corresponds to the indices for the sample

# y.s: values of variable y for s; vyl[echan] is y.s

# X: matrix of auxiliary information for the whole population
# We assume a general sampling design.

N <- length (X[, 11) # Size of the population
n <- length(y.s) # Sample size
z.s <- ifelse(y.s == 1, 1, 0)

weight <- 1/pik

xbeta <- as.vector (X %*% beta)

den <- 1 + exp (xbeta) # den is a vector of size N

predictl <- exp (xbeta)/den

Thatl <- sum(predictl) + sum(weight * (z.s - predictl[echan]))
e.s <- z.s - predictl[echan]

list (Thatl Thatl, e.s = e.s)

}

loglik.LGREG <-

function(beta, v = y, X = X, pik = pik)

{

# Computation of the loglikelihood
weight <- 1/pik

z0 <- ifelse(y == 0, 1, 0)
z1l <- ifelse(y == 1, 1, 0)
xbeta <- as.vector (X %*% beta)

den <- 1 + exp (xbeta)
predict0 <- 1/den
predictl <- exp (xbeta)/den
term0 <- z0 * log(l - predictl)
terml <- z1 * log(predictl)

- sum(weight * (termO0 + terml))

}

4. Application with the Academic
Performance Index Base Datatfile

Two topics that may be covered at the end of a first course in sampling theory are random number
generation and the Monte Carlo simulation. This is often one of the first contacts students will
have with pseudo-random numbers and random number generation via the inverse transformation
of the distribution function. The Monte Carlo simulation serves to illustrate many fundamental
issues, such as the probability concept of convergence and the statistical concepts of bias, variance
and confidence interval. As a technique it is particularly useful when the exact description of an
estimator’s sampling distribution is rather difficult to obtain. Ideally, if all the samples s that are
possible under a certain sampling plan were obtained, then one could determine the exact bias of
an estimator or the exact confidence level of a certain procedure. However, this is often a task of
enormous proportions, since the number of possible s increases rapidly as a function of N. To
perform a Monte Carlo simulation in our context, we draw B samples independently from a certain
population, where each sample s is obtained according to the sampling design p() The number
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of replications B must be taken reasonably large, for example we could use B = 1000. Then, we
use each sample to compute certain estimators and/or confidence intervals for the parameter of

interest. For example, to appreciate empirically the bias of the estimator P of the true proportion

A

P, where P

l

P, it suffices to compute the Monte Carlo mean of the B estimators B~ Zil

represents the estimator P calculated at the ith replication; the Monte Carlo bias is given by
B ;9:1 131 — P. This involves the law of large number, since according to that probability result

A

B il P converges to £ (13) in probability. By computing the Monte Carlo variance of the B

1

estimators, we may also study the variability of the estimators. Another possible application of the
Monte Carlo simulation is to help the students appreciate the meaning of a confidence interval, by
examining its coverage properties empirically. It suffices to compute B confidence intervals based
on the B samples and to count the number of times that the true proportion P belongs to the B
confidence intervals. Furthermore, since the confidence intervals are justified with asymptotic
arguments, the students will have the opportunity to observe whether the coverage rates are close
to the asymptotic confidence level 1-a in finite samples. See also Sirndal, et al. (1992), who
describe a complete Monte Carlo experiment.

More specifically, the Monte Carlo experiments in this section will help to illustrate the properties
of the estimators considered in this paper, particularly the coverage properties of the confidence
intervals and some efficiency considerations as well (for example, reduction of the variance
stemming from auxiliary information; adequate modelling; and choice of the sampling plan). We
carried out the simulations from the 2000 Academic Performance Index Base data file. In the
State of California, the 1999 Public Schools Accountability Act requires that the Department of
Education calculate the API every year: The API is a performance indicator (on a scale of 200 to
1000) for public schools. Schools are ranked, and the results are published and made available to
the public. Performance scores are particularly important for schools in California, since rewards
are granted if annual API growth targets are reached. For 2000, the API consists solely of results
from the Stanford 9 norm-referenced assessment. Documents describing the 2000 API are
available from the California Department of Education, and the API Base data file can be
downloaded from the Internet at the California Department of Education web site.

The original database contains 7367 schools, but 174 of these did not receive a 2000 API score.
For our simulation study, we simply removed these schools, leaving a database consisting of 7193
schools. When a school contains a sub-group with a given characteristic (ethnic or socio-
economic) accounting for more that 15% of the total pupil population and consists of at least 30
pupils—or if 100 pupils with valid Stanford 9 scores have the given characteristic—then that sub-
group is said to be numerically significant. Assume that, for a given socio-economic study, we
need to conduct a survey to find an estimator for the proportion of schools with a significant socio-
economically disadvantaged (SD) sub-group. Suppose that from an external source, we have at
our disposal some auxiliary information. That information consists of the 2000 API score
(variable AP100) and the percentage of students tested who are also participants in the free or
reduced-price lunch program (variable MEALS). It seems natural to include that kind of
information in a model studying a variable related to socio-economic issues. In estimating the
logistic model, we considered the variables log(API00) and MEALS/100. The logarithm was

taken to reduce the order of magnitude for the API00 variable; and the MEALS variable in the
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original database is expressed as a percentage. Our example is fictitious but it serves the purposes
behind our Monte Carlo experiment based on the real information in the API Base data file.

At this point, the instructor could challenge his students with some of the following questions:
1. Should we use the HT estimator in this problem?

2. What should be the impact of the auxiliary information on the point estimators, the
variances and the confidence intervals?

3. Is the regression estimator appropriate in this situation?
4. What should be the impact of the sampling plan on the variances of the estimators?

5. From a modeller’s perspective, why is the logistic regression estimator more satisfactory?
Would we gain any benefits in choosing a better model? What kind of benefits?

To see if some benefits can be obtained, a Monte Carlo study is conducted to investigate
empirically the accuracy of the confidence intervals when auxiliary information is included in the
estimation of proportions. In the first experiment, one thousand samples of size n=1800 were
independently drawn with the SRS and BE sampling plans (with 7 as the expected sample size for
BE) to estimate the proportion P. That sample size gives a sampling fraction of about 25%.

In the second experiment, we assume that, prior to the survey, it will be possible to identify the
type for each school. Stratification according to school type will allow us to obtain separate
estimations for each category: Elementary, High, Middle, and Small. A small school has between
11 and 99 pupils with valid Stanford 9 test scores. Summary information of the auxiliary
information is given in Table 4. We observe that the API scores are quite similar among the
school types. However, on average, it seems that the percentage of students tested who are also
participants in the free or reduced program is lower in high schools when compared with the
average at the population level of the MEALS variable. The size of the strata were Ny = 4779, N,
=854, N3= 1125, and Ns= 435, respectively. As in the first experiment, we considered a total
sample size of 1800 which we allocate proportionally as n; = 1196, n, =214, n3=281 and ns=
109. The proportional allocation is often sufficient for the estimation of a proportion, since the
gain of optimal allocation over proportional allocation is usually small (Kish 1965; Cochran
1977).

Table 4. Summary of the auxiliary information.

APIO0 MEALS
Mean Variance Mean Variance
Population level 664.3 (16308.6) 47.6 (924.0)
Elementary 671.6 (17044.2) 51.8 (958.5)
High 634.2 (11613.6) 30.9 (565.5)
Middle 655.3 (15435.9) 44.1 (752.2)

16



Small 666.5 (17234.7) 43.7 (914.1)

Based on these samples, we calculated confidence intervals for P using the HT estimator under
SRS and BE sampling plans. The confidence intervals are given by

n. —1

—Z Ve \/MPSG—PS)

and

R

respectively. For the LGREG estimators, the confidence intervals under the sampling plans SRS
and BE are

_ R 1 R 1-
N leﬂk +n_zs(J’k — Hy )iza/z [ fJSezs )

n

N

n\n

e T N e e

respectively, where e, =Y, — 41, . The preceding formulas are appropriate for constructing

confidence intervals at the population level or in a particular stratum (in the latter case it suffices
to replace U by Uy, N by N, n by nj, and finally, n by ny;). Under a stratified design, we can also
calculate confidence intervals at the population level, by combining the estimations in each
stratum. For the HT estimator, the confidence interval under the STSRS design is given by

Sz S U t)n0-n)

s

and under the STBE sampling plan the formula is

4 1 n, |n,
ZWPBEh - /2\/]12_:,”/1125(1_]\7_/1] : By -

h h

For the LGREG estimators, the confidence intervals under STSRS and STBE are
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respectively, where 7 nreg represents the LGREG estimator in stratum /. All the formulas for

the estimators and the variance estimators are reproduced in the Appendix of the paper. The
GREG estimator is also included in our study. The confidence intervals are similar to the

confidence intervals of the LGREG estimator, if one replaces /, by x', B, and the residuals are

computed as ¢,=Y,—X', IABS . The true values for the unknown parameters of interest at the

population level and at the stratum level are given in Table 5. We note a large difference between
small schools and the other schools. This may be partly related to the fact that, because of the 30-
pupils rule, no subgroup will be numerically significant for a very small school (less than 30
pupils). That variable should therefore be interpreted with great caution. However, from a
practical point of view, it may be useful to have separate estimations for each strata. In this
example, the small proportion of significant SD sub-group for small schools was naturally hidden
at the population level.

Table 5. True values of the parameters of interest.

True proportion

Population level 5772/7193 = 80.24%
Elementary 3956/4779 = 82.78%
High 712/854 = 83.37%
Middle 963/1125 = 85.60%
Small 141/435 =32.41%

For an estimator P, we noted £ Ve (ﬁ) the Monte Carlo mean and var,,. (ﬁ) the Monte Carlo
variance. The Monte Carlo mean of the estimators of variance is given by £, (I}) Finally, the

empirical coverage rates of the confidence interval of the form P+ z, /21}1/ *are given in the CR
column. With 1000 samples, acceptable values are in the interval [93.65%, 96.35%].

The results of the first experiment are presented in Table 6. All the estimators of P had a slight
bias, and the mean of the variance estimators was reasonably close to the Monte Carlo variance.
All the confidence intervals had empirical coverage rates close to the nominal level, and all the
values were in the interval [93.65%, 96.35%]. The LGREG estimator was more efficient than the
HT estimator. Under the SRS sampling plan, since 6.6102/2.5631 = 2.58, in our experiment the
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LGREG was much more efficient than the HT estimator. This illustrates the merits of an estimator
that can take advantage of the auxiliary information available. The GREG seems unbiased for the
true total, but it is less efficient than the LGREG estimator. This illustrates the robustness
property of the GREG estimator, since even if the model is misspecified, the regression estimator
remains unbiased and the variance estimator formula is still valid. These empirical results show
that the GREG estimator is model assisted, but not model dependent (Sirndal, et al. 1992).
However, a substantial reduction of variance is possible with the LGREG estimator, illustrating
that a linear regression model was not appropriate for these data.

The HT estimator under BE sampling was less efficient than under the SRS design. It is a well
known fact that the HT estimator may suffer of a variance penalty when the sample size is random
(Sérndal, et al. 1992). Interestingly, in our experiment, there is no variance penalty when a variable
sample size is used with LGREG or GREG estimators, since the Monte Carlo variances under SRS
or BE designs were similar. The sample mean (sample variance) of the final sample size for BE
sampling was 1801.66 (1318.53).

Table 6. Results of the first experiment.

SRS sampling plan

Eye(P) var, (B) ) B 7)) CR
HT 80.27% 6.6102 6.5964 95.4%
GREG 80.24% 4.2942 4.3509 96.0%
LGREG 80.23% 2.5631 2.6249 95.5%

BE sampling plan

E e (P) vary.c (P) (*) E e (V) *) CR
HT 80.33% 32.367 33.460 95.1%
GREG 80.27% 4.3433 4.3552 95.5%
LGREG 80.25% 2.5375 2.6256 95.4%

* column x107°

In Table 6, only results at the population level could be computed, since, in our experiments, the
SRS and BE sampling plans did not incorporate the school type as an auxiliary variable. With
stratified designs, estimations are calculated at the population level and also for each school type.
The results of the second experiment are presented in Table 7. First we study the estimation of the
proportion at the population level. We observe that including school type as a stratification
variable gave a lower variance for the LGREG estimator. If we compare the SRS and STSRS
sampling plans, we observe that the gain in efficiency is 2.5631/1.2492 = 2.05. In our experiment,
we see that the gain was more modest when we compare the SRS/HT and STSRS/HT strategies.
The GREG estimator was still less efficient than the LGREG estimator. When the HT/BE and
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HT/STBE strategies are compared, it appears that stratification did not improve the estimation.
The sample means (sample variances) of the final sample size under STBE for each stratum were
1197.20 (852.54), 214.28 (184.63), 281.23 (218.67) and 108.94 (85.09). The confidence intervals
had empirical coverage rates close to the nominal level and all the values were in the interval
[93.65%, 96.35%].

Second, we study the estimation of the proportions at the stratum level. It seems that we obtained
more accurate results for the LGREG estimator, particularly in the stratum consisting of
Elementary schools, since the reduction of variance for STSRS is 8.4534/1.0179 = 8.30. It does,
however, seem that the coverage rates were slightly below the nominal coverage rate, particularly
for Middle schools. This is related to the fact that the estimators of variance seem to
underestimate the true variance in that stratum; indicating that the confidence interval is too
narrow. A similar behaviour has been reported in Lehtonen and Veijanen (1998a). The LGREG
estimator was more efficient than the GREG estimator in each stratum, except for the small
schools where it was slightly less efficient. Under STBE sampling with LGREG estimator,
spectacular variance reductions were obtained, particularly in Elementary and Middle strata. The
LGREG/STBE and LGREG/STSRS strategies gave very similar results.

Table 7. Results of the second experiment.

STSRS sampling plan
E,(P) var, (P) ) E ) CR
HT, pop level 80.27% 5.8346 5.9836 95.0%
GREG, pop level 80.28% 3.6950 3.6499 94.0%
LGREG, pop level 80.25% 1.2492 1.1217 93.8%
HT, Elem school 82.82% 8.4534 8.9202 95.0%
GREG, Elem school 82.82% 4.9456 5.0862 95.1%
LGREG, Elem school 82.77% 1.0179 0.9138 93.8%
HT, High school 83.34% 45.942 48.698 94.8%
HT. High school 83.38% 34.726 35.341 94.1%
LGREG, High school 83.41% 19.257 17.185 93.6%
HT, Middle school 85.58% 33.267 32.972 95.3%
GREG, Middle school 85.61% 22.423 22.038 95.4%
LGREG, Middle school 85.59% 5.114 4.268 90.1%
HT, Small school 32.50% 144.615 151.227 95.1%
GREG, Small school 32.52% 96.588 100.472 94.2%
LGREG, Small school 32.50% 101.114 101.644 93.4%
STBE sampling plan
E,.(P) var (P) () EyelP) 0 CR
HT, pop level 80.32% 33.786 33.460 94.6
GREG, pop level 80.29% 3.2108 3.6472 96.2
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LGREG, pop level 80.26% 1.1539 1.1105 93.7

HT, Elem school 82.87% 51.826 51.951 94.8
GREG, Elem school 82.82% 4.5150 5.0959 96.2
LGREG, Elem school 82.79% 0.9393 0.9043 94.5
HT, High school 83.54% 337.10 292.55 924
GREG, High school 83.49% 34.668 35.162 94.5
LGREG, High school 83.39% 17.775 17.050 93.9
HT, Middle school 85.55% 24798 228.41 93.9
GREG, Middle school 85.57% 22.438 22.069 94 .4
LGREG, Middle school 85.59% 5.1460 4.2775 90.3
HT, Small school 32.49% 215.498 223.352 953
GREG, Small school 32.57% 99.343 99.069 94.0
LGREG, Small school 32.57% 100.416 100.168 94.3

* column x107°

To summarize, our analysis of the Monte Carlo experiments allows us to answer the typical
questions asked above.

1. The HT estimator remained appropriate, since it provided an unbiased estimator of the true
proportion. However, since auxiliary information was made available, much lower
variances were obtained with an estimator that makes efficient use of the available
variables.

2. The auxiliary information helped to reduce the variance of the estimators. While all the
estimators were unbiased or approximately unbiased, the GREG estimators and LGREG
estimators showed less variability than the HT estimator and the confidence intervals were
more precise for the same level of confidence.

3. Since the regression estimator is model assisted and not model dependent, the estimators of
variance for the GREG estimators were valid and the coverage properties were rather close
to the nominal confidence level. However, a linear regression model is hard to motivate
with discrete data.

4. The empirical variance of the HT estimator was higher under BE sampling than under SRS
sampling. Interestingly, the differences in efficiency between these two designs were
smaller for the GREG and LGREG estimators. This suggests that the auxiliary information
compensated for the random sample size. With stratified sampling plans, more precise
estimations at the population level were generally observed, since many unrepresentative
samples had been eliminated with an appropriate stratification variable. Furthermore,
stratified designs offered the possibility of obtaining separate estimations for each stratum.
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5. Conceptually, the logistic model seemed more satisfactory since the underlying variable is
dichotomous. The LGREG estimator proved more efficient than the GREG estimator in
our experiments, that is the former estimator usually generated lower variances than the
latter.

5. Conclusion

The estimation of proportions is an important subject with many practical applications. In a first
survey sampling course, auxiliary information is an important topic and the ordinary sample mean
or estimated total can be improved with the general regression estimator, since it is capable of
incorporating the auxiliary information. However, regression estimators are more suitably used
for continuous variables. In estimating a proportion, we might also want to incorporate auxiliary
information. In this paper, we demonstrated how this could be done with the logistic regression
estimator, which is based on a logistic model. It is more natural to motivate the use of a logistic
model for a discrete variable. We also discussed different sampling plans, such as Bernoulli’s,
which might have interesting pedagogical merits. We further considered stratified sampling plans
whose usefulness resides in their capacity to compute a separate estimation for each stratum.
Furthermore, in many situations, an efficient stratification variable may be of help in obtaining
accurate estimations. In the simulation section, we use a real database to show that smaller
variances might be obtained with the logistic regression estimator than with the HT estimator or
with the classical regression estimator. In our empirical study, the LGREG estimator gave
accurate estimations under various sampling plans, but the best results were observed using
stratified designs. In conclusion, when estimating a proportion, the use of auxiliary information
may give large gains in efficiency and the choice of an appropriate model may lead to smaller
variances. When the time comes to discuss the modelling of survey data, it would seem that
instructors may find logistic models and the LGREG estimator to be of great help.
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7. Appendix. Summary of the different
estimators

Strategy Estimator Estimator of variance
SRS sampling / 1 (1 _ f)
HT estimator P = n_ ZS Vi ﬁ P (1 -P )
BE sampling / HT 1 | n\n,
estimator Py = ; zs Vi ; (1 - ﬁj 7 P
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STSRS sampling /

HT estimator st,s 7 1
h=l1 h=1 hs
STBE sampling / Lek ) " 1 n \n.
HT estimator Puses = Z W, Pogns Vipe = Z W) —|1-— =P,
h=1 =1 nh Nh nh
SRS sampling / —N- -1
: = Vi—H 2
LGREG estimator Toscna Z Z ( k k) n e
BE sampling / | N(N
LGREGpestzigmator Losoneo= Z Z (yk 'uk) N _(_ B 1}2 e
n\n
STSRS sampling / RSN & (1-1,)
LGREG estimator N hZ_:, YhLGREG ;th n, Se{/
STBE sampling / IR U N (N
LGREG estimator N Z YhLGREG N ZZ Bl - s e
h=1 =t My \ 1, !
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