Enron Network Analysis Tutorial

r date()

Enron Tutorial

We provide this Enron Tutorial as an appendix to the paper in Journal of Statistical Education, *Network Analysis with the Enron Email Corpus*. The paper describes the centrality measures in detail, and we go through the steps in the R analysis here.

As in the .Rmd file with the R code, be sure to install the packages **WGCNA** and **igraph**.

The first step of the analysis is to import the data and create the adjacency matrix of our choice. AM represents emails sent from node \(i \) to node \(j \) with messages sent via CC weighted as described in the paper. The transpose of the matrix AMt represents emails received by node \(i \) from node \(j \) (again, with CC values weighted differently than messages sent directly to an individual). The sum of the two matrices, AM2, represents the total email correspondence (sent and received) between nodes \(i \) and \(j \).

```r
setwd("H:/teaching/ResearchCircle/Spring2014 - DataScience/JSE.DSS") AM = as.matrix(read.csv("Final Adjacency Matrix.csv", sep="", header=TRUE, row.names=1)) # sent emails AMlist = read.csv("Final Adjacency Matrix.csv", sep="", header=TRUE, row.names=1) # sent emails as list # employee information might be interesting to analyze for considering relationships # within the company # enronemployees = read.table("Enron Employee Information.csv", sep="", header=T) AMt = t(AM) # received emails AM2 <- AM + t(AM) - 2*diag(diag(AM)) # sent and received emails
```

We can represent the adjacency matrix graphically using a heatmap.

```r
AM.names=c(rep(NA,20), row.names(AM)[21],rep(NA,44), row.names(AM)[66], rep(NA,2), row.names(AM)[69], rep(NA,87)) heatmap.2(log2(AM+1), Rowv=FALSE, Colv= FALSE, dendrogram="none", col = (brewer.pal(9,"Blues")),scale="none", trace="none", labRow=AM.names,labCol=AM.names, colsep=FALSE, density="none", key.title="", key.xlab="# of emails (log2 scale)" , mar=c(8,8))
```

We can represent the adjacency matrix graphically using a heatmap.
Eigenvector Centrality

The first measure of centrality that we use is eigenvector centrality; the `evcent` function is available in the `igraph` package. Degree, Betweenness, and Closeness centrality measures are also given in the `igraph` package.

```r
# eigenvalue centrality (on both directed graphs),
# degree, betweenness, and closeness
ing <- graph.adjacency(do.call(rbind,AMlist))  # creates a network graph using the adjacency matrix
ingt <- graph.adjacency(do.call(cbind,AMlist))  # creates a network graph using the transpose of the adjacency matrix
eigcent <- igraph::evcent(eng, directed=TRUE)  # eigenvalue centrality
eigcentt <- igraph::evcent(engt, directed=TRUE)  # eigenvalue centrality on transpose of graph
dcent <- igraph::degree(eng)  # degree centrality
bmeas <- igraph::betweenness(eng)  # betweenness
cmeas <- igraph::closeness(eng)  # closeness

# TOM
AM2 <- AM2 / max(AM2)  # set values between 0 and 1
TOM <- TOMsimilarity(AM2)  # create TOM
```

..connectivity..
..matrix multiplication..
..normalization..
..done.
Initially, we plot the ranks of the individuals based on the different measures of centrality. The ranks are clearly correlated, but we can also see that they seem to be measuring different qualities of the email correspondence matrix.

```
comptable <- matrix(ncol=6, nrow=dim(AM)[1])
comptable[,1] <- rank(dcent)
comptable[,2] <- rank(eigcent$vector)
comptable[,3] <- rank(eigcentt$vector)
comptable[,4] <- rank(cmeas)
comptable[,5] <- rank(bmeas)
comptable[,6] <- rank(TOMrank)
pairs(comptable[,1:6], pch=20, main="Ranking Metrics Comparison",
      labels=c("Degree","EV Cent.", "EV Cent. (T)", "Closeness","Betweenness", "TOM"),
      cex=.5, xlim=c(0,160), ylim=c(0,160), lower.panel=panel.cor)
```

Next, we list the top 10 most central individuals for each metric. Note that we use the negative of the centrality measure so that the order function produces the first individual as the most central.

```
rankedEnron <- data.frame(Degree = rownames(AM)[order(-dcent)],
                           EVcent = rownames(AM)[order(-eigcent$vector)],
                           Closeness = rownames(AM)[order(-cmeas)],
                           Betweenness = rownames(AM)[order(-bmeas)],
                           TOM = rownames(AM)[order(-TOMrank)]
```
Hierarchical Clustering

Below, we create the hierarchical cluster with both the symmetric (sent and received) adjacency email matrix as well as the TOM adjacency build from the symmetric measures. After building the dendrogram, we find groups of employees who are strongly linked and report the names of the individuals.

```r
dissAM2 = 1 - AM2
hierAM2 = hclust(as.dist(dissAM2), method="average")
groups.9 = as.character(cutreeStaticColor(hierAM2, cutHeight=.9, minSize=4))

plotDendroAndColors(dendro = hierAM2, colors=data.frame(groups.9),
                    dendroLabels = FALSE, abHeight=.9,
                    marAll =c(0.2, 5, 2.7, 0.2), hang=.05,
                    main ="min 4 per group, cutoff=0.9", ylab="1 - S&R/max(S&R)")
```

<table>
<thead>
<tr>
<th>Degree</th>
<th>EVcent</th>
<th>EVcentT</th>
<th>Close</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeff Dasovich</td>
<td>Tana Jones</td>
<td>Sara Shackleton</td>
<td>Robert Benson</td>
</tr>
<tr>
<td>Mike Grigsby</td>
<td>Sara Shackleton</td>
<td>Susan Bailey</td>
<td>Mike Grigsby</td>
</tr>
<tr>
<td>Tana Jones</td>
<td>Stephanie Panus</td>
<td>Marie Heard</td>
<td>Louise Kitchen</td>
</tr>
<tr>
<td>Sara Shackleton</td>
<td>Marie Heard</td>
<td>Tana Jones</td>
<td>Kevin M. Presto</td>
</tr>
<tr>
<td>Richard Shapiro</td>
<td>Susan Bailey</td>
<td>Stephanie Panus</td>
<td>Susan Scott</td>
</tr>
<tr>
<td>Steven J. Kean</td>
<td>Kay Mann</td>
<td>Elizabeth Sager</td>
<td>Scott Neal</td>
</tr>
<tr>
<td>Louise Kitchen</td>
<td>Louise Kitchen</td>
<td>Jason Williams</td>
<td>Barry Tycholiz</td>
</tr>
<tr>
<td>Susan Scott</td>
<td>Elizabeth Sager</td>
<td>Louise Kitchen</td>
<td>Greg Whalley</td>
</tr>
<tr>
<td>Michelle Lokay</td>
<td>Jason Williams</td>
<td>Jeffrey T. Hodge</td>
<td>Phillip K. Allen</td>
</tr>
<tr>
<td>Chris Germany</td>
<td>Jeff Dasovich</td>
<td>Gerald Nemec</td>
<td>Jeff Dasovich</td>
</tr>
<tr>
<td>Louise Kitchen</td>
<td>Jeff Dasovich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mike Grigsby</td>
<td>Richard Shapiro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susan Scott</td>
<td>Steven J. Kean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeff Dasovich</td>
<td>Mike Grigsby</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mary Hain</td>
<td>Tana Jones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sally Beck</td>
<td>Sara Shackleton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kenneth Lay</td>
<td>Mary Hain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scott Neal</td>
<td>Marie Heard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kate Symes</td>
<td>Stephanie Panus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cara Semperger</td>
<td>Susan Scott</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
min 4 per group, cutoff=0.9

1 − S&R/max(S&R)

groups.9

table(groups.9)

groups.9
blue grey turquoise
4 147 5

row.names(AM)[groups.9=="turquoise"]

[1] "Susan Bailey" "Marie Heard" "Tana Jones" "Stephanie Panus"
[5] "Sara Shackleton"

row.names(AM)[groups.9=="blue"]

[1] "Jeff Dasovich" "Mary Hain" "Steven J. Kean" "Richard Shapiro"

Now cluster with TOM

for the next plot, dissimilarity uses TOM metric to encorporate neighbors
dissTOM=TOMdist(AM2)

..connectivity..
..matrix multiplication..
..normalization..
..done.
rownames(dissTOM) <- rownames(AM)
colnames(dissTOM) <- rownames(AM)

Create the hierarchical clustering
hierTOM = hclust(as.dist(dissTOM), method="average")
groupsTOM.95 = as.character(cutreeStaticColor(hierTOM, cutHeight=.95, minSize=4))

Plot results of all module detection methods together:
plotDendroAndColors(dendro = hierTOM, colors=data.frame(groupsTOM.95), abHeight=.95,
 dendroLabels = FALSE, marAll =c(0.2, 5, 2.7, 0.2),
 main ="min 4 per group, cutoff=0.95", ylab="TOM dissimilarity")
[1] "Susan Bailey" "Marie Heard" "Tana Jones" "Stephanie Panus"
[5] "Elizabeth Sager" "Sara Shackleton"

`row.names(AM)[groupsTOM.95=="brown"]`

[1] "Lindy Donoho" "Michelle Lokay" "Mark McConnell" "Kimberly Watson"

`row.names(AM)[groupsTOM.95=="yellow"]`

[1] "Drew Fossum" "Steven Harris" "Kevin Hyatt" "Susan Scott"