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Abstract  
 

Students learn to examine the distributional assumptions implicit in the usual t-tests and 

associated confidence intervals, but are rarely shown what to do when those assumptions 

are grossly violated. Three data sets are presented. Each data set involves a different 

distributional anomaly and each illustrates the use of a different nonparametric test. The 

problems illustrated are well–known, but the formulations of the nonparametric tests 

given here are different from the large sample formulas usually presented. We restructure 

the common rank-based tests to emphasize structural similarities between large sample 

rank-based tests and their parametric analogs. By presenting large sample nonparametric 

tests as slight extensions of their parametric counterparts, it is hoped that nonparametric 

methods receive a wider audience.  

 

1.  Introduction 
 

Rank-based nonparametric tests were discovered in the 1940’s by Wilcoxon, who 

realized that outliers created problems when employing parametric tests (Salzburg, 2001).  

Wilcoxon provided a strong impetus for using ranks in nonparametric inference about the 
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same time as many other researchers including Mann and Whitney in 1947, Festinger in 

1946, White in 1952, van der Reydn in 1952, as well as Kruskal and Wallis in 1952 

(Conover, 1999). Though these tests generally rely on elementary statistical concepts and 

college algebra, most entry level students are not exposed to this class of inference.  

 

Since there are fewer assumptions for rank based tests and they perform almost as well 

as, and often much better than, parametric tests, the authors wish to make a case for 

teaching this class of tests in conjunction with parametric tests in lower level statistics 

courses. In addition, these tests could easily serve as an advanced topic in Advanced 

Placement statistics courses. The authors will revisit Conover and Iman (1981) and offer 

a related approach. Both approaches offer a much improved method of teaching 

nonparametric inference.  

  

Although nonparametric statistics are not currently an official part of the AP statistics 

curriculum, they are included as optional material in many textbooks at that level 

(DeVore and Peck, 2008; Moore, 2010; Utts and Heckard, 2007). Incorporating the ideas 

in this paper should make these optional chapters more attractive.   

  

 

2.  Advantages of rank-based methods 
 

Rank-based procedures are a subset of nonparametric procedures that have three 

strengths: 1) as nonparametric procedures, they are preferred when certain assumptions of 

parametric procedures (the usual t- and F- tests) are grossly violated (example: normality 

assumption when the data set has outliers), 2) rank-based methods are some of the most 

powerful nonparametric methods, often having nearly as much power as parametric 

methods when the assumptions of parametric methods are met, and often having more 

power when the data come from non-normal populations, and 3) rank-based methods can 

be presented in a way that provides a natural transition for students familiar with 

parametric methods.  

 

The rank-based tests discussed in this paper require fewer “shape” assumptions than their 

parametric alternatives. For matched-pairs data, the parametric approach involves 

computing the differences within pairs and performing a one-sample t-test. This test 

involves the assumption that differences within pairs are normal. The rank-based 

alternative discussed below, the Wilcoxon signed ranks test, assumes only that the 

distribution of differences within pairs be symmetric without requiring normality. 

 

The parametric two-sample procedure, the two-sample t-test, assumes both samples come 

from populations with a normal distribution and the same variance. The Mann-Whitney 

test, the rank-based procedure, assumes both distributions have the same shape, but any 

shape. The k-sample parametric (one-way ANOVA) and rank-based (Kruskal-Wallis) 

tests have the same assumptions, respectively, as their two-sample counterparts. All t-

tests require continuous data, while the Mann-Whitney and Kruskal-Wallis tests require 

only data of ordinal scale.  
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Conover (1999, page 269) begins his chapter on rank-based tests with a general 

observation: 

 

 If data are numeric, and, furthermore are observations on random variables that 

 have the normal distribution so that all of the assumptions of the usual parametric 

 test are met, the loss of efficiency caused by using the methods of this chapter is 

 surprisingly small. In those situations the relative efficiency of tests using only the 

 ranks of the observations is frequently about .95, depending on the situation. 

 

(Relative efficiency is the ratio of sample sizes needed for two tests to attain the same 

power. When relative efficiency is close to one, the two tests being compared are about 

equally efficient in their use of the data.) When the data are not normal, the t-test still 

performs reasonably well (Posten, 1979; Pearson and Please, 1975), but rank-based 

methods are often superior (Ramsey and Schafer, 2002; McDougal and Rayner, 2004). 

When the data contain outliers the t-test is suspect, while rank-based methods are 

unaffected (because outliers have the same rank as any other large observation). When 

data contain outliers, some manner of nonparametric procedure is almost mandatory.  

 

Rank-based methods can also handle certain types of censored data. Ramsey and Schafer 

(2002) present a case in which students are given a task to complete and at the end of five 

minutes a few of the students have not completed the task. For those who did not 

complete the task, completion times are censored; only a lower bound for the true 

completion time is known. Without complete observations, the t-test cannot be 

performed, but the rank-based method need only assign the largest ranks to the censored 

observations.     

 

3. The common structure of many large sample tests 

Rossman and Chance (1999) write: 

 We want students to see that the reasoning and structure of statistical inference 

 procedures are consistent, regardless of the specific technique being studied. For 

 example, students should see the sampling distributions for several types of 

 statistics to appreciate their similarities and understand the common reasoning 

 process underlying the inference formulas. In addition, students can view  these 

 formulas as special cases of one basic idea. …By understanding this general 

 structure of the formulas, students can concentrate on understanding one big idea, 

 rather than trying to memorize a series of seemingly unrelated formulas. Students 

 can then focus on the type and number of variables involved in order to properly 

 decide which formula is applicable. This approach also empowers students to 

 extend their knowledge beyond the inference procedures covered in the 

 introductory course.   

For nonparametric statisticians, most rank-based hypothesis tests are based on the 

permutation distribution of the ranks under the null hypothesis. This procedure is based 

on enumerating all possible, equally likely, arrangements of the ranks under the null 
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hypothesis. Although not always identified as permutation tests, many examples of this 

idea are both explicit and detailed in many textbooks (Randles and Wolfe, 1979; 

Hettmansperger, 1984; Lehmann, 1975).  Simple functions of the ranks, such as the sum 

of the ranks for one group, are used to construct a sampling distribution from the 

enumerated ranks.  

Large sample formulas are just approximations to permutation tests when the sample size 

becomes both so large that explicit enumeration becomes cumbersome and so large that 

the central limit theorem can be relied on to generate an approximately normal test 

statistic. 

Many introductory statistics teachers at the high school, the community college, and even 

the college level are mathematicians or mathematics educators who have had little 

statistical training and may have heard of nonparametric tests but have never worked with 

these tests. Permutation tests are almost never discussed in introductory statistics 

textbooks. Even the basic elements needed, counting techniques, play a smaller role in 

each new edition of introductory textbooks (whether this trend is good or bad is another 

topic). On the other hand, all introductory textbooks discuss the role of sample size and 

the central limit theorem in developing approximately normal (or t) sampling 

distributions.   

Because of this, some instructors rarely think of rank-based test statistics as large sample 

approximations to permutation distributions, nor do they automatically understand the 

motivation for the statistics traditionally used to summarize ranked data. For these 

colleagues it may be more natural to emphasize similarities between large sample rank-

based tests and large sample parametric tests.  

A general approach to rank-based methods that emphasizes structural similarities 

between rank-based tests and parametric tests would proceed as follows:  Assign a score 

to the observations based on their rank, compute average scores, compute the standard 

deviation (or standard error) of the average scores, and form the usual z- or χ2 – test (or 

perhaps the usual t- and F- test). When sample sizes are sufficiently large, the computed 

test statistic can be compared to a table or the p-value can be found using a calculator or 

statistical software.  

The Wilcoxon signed ranks test and the Mann- Whitney test can be presented in a 

standard form: 

error) standard(or devation  standard

score hypothesis null -score(s) average
 )(or  tz  

 

The Kruskal-Wallis test can be presented as a slight generalization of these procedures 

similar to the generalization of parametric z-tests to χ2-tests or the generalization of 

parametric t-tests to F-tests. For students and instructors with no training in permutation 

tests, but who are familiar with parametric tests, this seems more natural than the versions 

of these formulas found in textbooks on nonparametric statistics.  
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Although average scores are computed, these tests, unlike parametric tests, are not about 

means.  Scoring the data preserves order, but loses (sometimes troublesome) 

distributional details. Most nonparametric tests, including all the rank-based tests we 

discuss, involve inference for medians and comparisons of medians.  

 

The score assigned an observation is not always the rank of that observation. We will see 

with the signed ranks test (in section 5) that the scoring is slightly more complex, but still 

based on ranks and intuitively appealing. 

 

The following examples will demonstrate three themes emphasized throughout the paper: 

1) when the normality assumption is violated, nonparametric methods often outperform 

parametric methods, 2) nonparametric methods are traditionally presented in a way that 

does not emphasize their structural similarities to analogous parametric tests, and 3) rank-

based methods, in particular, can be presented in a way that emphasizes similarities with 

parametric tests.  

 

In each case two reasonable approaches to rank-based tests will be presented: 1) an 

approach originally suggested by Conover and Iman (1981) and 2) a revised presentation 

of the usual large sample rank-based test. An argument will be made that both of these 

approaches offer presentations of rank-based tests that can be implemented as natural 

extensions of what students already know and that each approach has strengths and 

weaknesses.      

   

4.  A rank-based two-sample test 
 

The usual way of presenting the Mann-Whitney test is based on assigning the 

observations their ranks (tied observations share an average rank) and then performing a 

test based on the sum of the ranks for one of the groups (it does not matter which group). 

When the sample sizes are small, tables have been constructed to assess the size of the 

test statistic. When samples sizes are large (often used is a sample size of 20 or more), the 

test statistic is approximately normal and tabulated values are not required (Conover 

1999; Daniel, 1990). 

 

To illustrate each test procedure, we use data sets from the Data and Story Library 

(DASL). The first data set, “cloud seeding”, involves a randomized experiment to 

determine whether cloud seeding increased rainfall. Each group (days when clouds were 

seeded and days when clouds were not seeded) has 26 observations.  

 

Table 1 displays both the original observations and the scores assigned to the 

observations. For this test, the score assigned each observation is just its rank. Note that 

tied observations are assigned an average rank. 
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Table 1: The DASL cloud seeding data: observations and the assigned scores.  

* indicates ties. These data display substantial right-skewness. 

 

Group observation rank group observation rank 

unseeded 1202.60 49 seeded 2745.60 52 

unseeded 830.10 47 seeded 1697.80 51 

unseeded 372.40 43 seeded 1656.00 50 

unseeded 345.50 42 seeded 978.00 48 

unseeded 321.20 40 seeded 703.40 46 

unseeded 244.30 35 seeded 489.10 45 

unseeded 163.00 31 seeded 430.00 44 

unseeded 147.80 30 seeded 334.15 41 

unseeded 95.00 25 seeded 302.80 39 

unseeded 87.00 23 seeded 274.70 37.5* 

unseeded 81.20 22 seeded 274.70 37.5* 

unseeded 68.50 21 seeded 255.00 36 

unseeded 47.30 20 seeded 242.50 34 

unseeded 41.10 19 seeded 200.70 33 

unseeded 36.60 17 seeded 198.60 32 

unseeded 29.00 14 seeded 129.60 29 

unseeded 28.60 13 seeded 119.00 28 

unseeded 26.30 12 seeded 118.30 27 

unseeded 26.10 11 seeded 115.30 26 

unseeded 24.40 10 seeded 92.40 24 

unseeded 21.70 9 seeded 40.60 18 

unseeded 17.30 7 seeded 32.70 16 

unseeded 11.50 6 seeded 31.40 15 

unseeded 4.90 3.5* seeded 17.50 8 

unseeded 4.90 3.5* seeded 7.70 5 

unseeded 1.00 1 seeded 4.10 2 

Column mean        165                 21.31                                        442                    31.69 

Column std. dev.   278                 14.36                                        651                    14.36 

 

 

The usual Mann-Whitney test involves just the sum of the ranks, W, from one group. It is 

natural, for a student familiar only with parametric tests, to immediately guess that a test 

could be based on comparing the average rank of each group. It may not be obvious to 

that same student that the sum of the ranks from one group has a one-to-one mapping to 

the difference in average ranks between groups.  It is also easier for a student to 

remember a pattern when it is similar to a pattern they have already seen.  

 

Table 2: Two approaches compared –The traditional Mann-Whitney test on the left 

(based on the sum of the ranks from the seeded group) and our suggested presentation 

(based on the average ranks for the two groups) on the right.  
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The expression on the right side, V(R), is derived in the appendix. Because there are a 

few ties in the data, the formula is only approximately (but essentially) correct in this 

case. 

 

The presentation on the left in Table 2 is identical to the presentation given in two 

excellent books on introductory statistics (Moore, 2010; Utts and Heckard, 2007), as well 

as many nonparametric textbooks (Hollander and Wolfe, 1999; Hettmansperger, 1984). 

The presentation on the right is new. Both sides produce identical z-scores, as the 

computations are algebraically equivalent.  

 

The actual scoring of the data is easy enough to explain to students, but the test on the 

right more closely follows a pattern the students (and teachers) have already seen. There 

are two reasonable approaches: perform a pooled two-sample t-test on the ranks (Table 

3), or restructure the Mann-Whitney test (Table 2) so that it is transparent that the test is a 

comparison of average group ranks. Both procedures produce nearly identical p-values 

when sample sizes are moderate or large. These procedures closely follow a pattern 

established with the parametric t-test (Table 4).   
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Table 3: The usual parametric t-test and the approach suggested by Conover and Iman 

(1981). Notice the test is identical to the two-sample t-test (pooled estimate of variance) 

except that ranks are used in place of the original values for the measurements.   
 

Parametric approach: 

Group  sample size  mean  standard deviation 

seeded         26                             442                              651 

unseeded              26                             165                              278 

 

pooled standard deviation = 500.52  degrees of freedom = 50 

t-statistic = 2.00     p-value = 0.051 

 

Using ranks: 

Group  sample size  mean  standard deviation 

seeded         26                             31.7                             14.4 

unseeded              26                             21.3                             14.4 

 

pooled standard deviation = 14.4  degrees of freedom = 50 

t-statistic = 2.61     p-value = 0.012 

 

 

Table 4: Usual parametric procedure, the procedure suggested by Conover and Iman 

(1981), and the Mann-Whitney test in a format emphasizing the test can be thought of as 

a difference in average group ranks.  

   

            parametric                   Conover and Iman                           Mann-Whitney                

           test statistic                 rank-based test statistic                        test statistic 
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12/)1()(  NNRV  (see Appendix, this is approximately correct when there are a 

limited number of ties) 

 

The rank-based procedures produce similar p-values that are substantially smaller than 

that of the parametric procedure, because the data display skewness. In a case such as 

this, when the normality assumption is grossly violated, a nonparametric approach 

generally produces more powerful tests (smaller p-values when the alternative hypothesis 

is true.)     

 

5.   A rank-based test for matched-pairs 
 

The parametric matched-pairs test involves finding the differences within each pair and 

performing a one-sample t-test on the resulting differences. The most common rank-
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based procedure also works with these differences within pairs. These differences are the 

observations that are assigned a score. (The procedure discussed in this section can also 

be used, in a slightly different way, to perform a one sample rank-based test.) 

 

The assignment of a score to an observation is based on the sign and magnitude of the 

difference. The method is rank-based because only the rank of the magnitude is 

considered. Denote the differences within pairs, id . Assign ranks to || id , the absolute 

values of the differences. Recover the signs: |)(|)( iii drankdsignr  ; these are the 

signed ranks for the observations.  

 

The DASL Fish data provide a useful illustration. The data are the 1970 and 1980 prices 

of a fixed unit of various types of fish. If we are interested in whether fish have risen in 

price at a rate different from inflation we might compute a difference = 1980 price – 

adjusted 1970 price, where the 1970 price has been adjusted for inflation.  If the null 

hypothesis is true, the distribution of the paired differences is centered at zero. Similarly, 

the distribution of the signed ranks should have a median of zero, when the null 

hypothesis is true.  

 

Table 5: DASL Fish story data. Difference = 1980 price – 2.1237(1970 price)  

= 1980 price – inflation adjusted 1970 price. “SEA SCALLOPS” is an outlier in each 

year and after taking the difference. 

 

Type of fish  1980 price 1970 price difference signed 

rank 

COD 27.3 13.1 -0.520 -1 

MENHADEN 4.5 1.8 0.677 2 

OYSTERS, EASTERN 131.3 61.1 1.542 3 

CLAMS, BLUE HARD 20.3 6.6 6.284 4 

FLOUNDER 42.4 15.3 9.907 5 

LOBSTERS 189.7 94.7 -11.414 -6 

OCEAN PERCH 23 4.9 12.594 7 

HADDOCK 38.7 25.8 -16.091 -8 

TUNA, ALBACORE 80.1 26.7 23.397 9 

SALMON, COHO 109.7 39.3 26.239 10 

SHRIMP 149 47.6 47.912 11 

SALMON, CHINOOK 166.3 55.4 48.647 12 

CLAMS, SOFT 150.7 47.5 49.824 13 

SEA SCALLOPS 404.2 135.6 116.226 14 

 

The parametric test applied to these data produces a test statistic of 2.44, on 13 degrees of 

freedom, with a p-value of 0.03. Introductory textbooks are correct in suggesting 

parametric t- tests produce reliable results even when sample sizes are quite small, 

assuming outliers and skewness are not major problems. In the case of the fish data there 

is, however, an outlier (see Figure 1).  

 



Journal of Statistics Education, Volume 18, Number 1 (2010) 

 

 

 10 

 
Figure 1: The fish prices data, after taking differences within paired data, have an outlier.  

 

The parametric method is easy and familiar, but the rank-based method is preferred. 

Because there is an outlier in the data, to the extent that the parametric and rank-based 

methods produce different results, rank-based results are more reliable.  

  

The usual rank-based test, the Wilcoxon signed ranks test, involves summing either the 

positive or the negative signed ranks. Since there are just three negative signed ranks, 

summing these is easiest, so T- = 15.  An exact p-value is found by counting the number 

of subsets of the ranks from 1 to 14 that give a rank sum of 15 or less. There are 136 such 

subsets, drawing without replacement including the null set. The one-sided p-value is 

found by dividing 136 by the total number of possible subsets, 2
14

 , and then multiplying 

by two for the two-sided p-value (2·136/2
14

 = 0.0166). The one-sided p-value is in 

agreement with the exact tabled value of 0.008 given on page 327 of Owen (1962, using 

n = 14, a = 15 in his notation). The standard deviation for T- 

is   ,93.1524/)12)(1(
2/1
 nnn and the expected value for T- (under the null hypothesis) 

is n(n+1)/4 = 52.5, so the z-score is (15-52.5)/15.93 = -2.35, yielding a two sided p-value 

= 0.0188. This is a much smaller p-value than that produced by the parametric test. (If the 

sum of the positive signed ranks were used, T+ = 90, the z-score would be +2.35). 

 

In this form, the Wilcoxon signed ranks test, like the Mann-Whitney test, is easy to 

compute but unnatural for a student (or instructor) unfamiliar with permutation tests. The 

introductory statistics student’s natural instinct, having seen the paired parametric test, 

would be to take differences within pairs and examine some average difference or 

average score. While the average score is mathematically equivalent to the sum of either 

the positive or negative scores (when data are ranked), the latter does not fit a pattern the 

teacher has spent considerable effort establishing.  

 

 As before, we present two alternatives, one directly analogous to the parametric t-test 

and suggested by Conover and Iman (1981), and the other a version of the Wilcoxon 

signed ranks test that emphasizes similarities to the paired t-test.   

 

The parametric method and Conover and Iman’s suggestion differ only in that the first 

approach uses the original differences while the latter uses the resulting signed ranks. The 
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Wilcoxon formulation is simply a form of the large sample z-score formula that 

emphasizes differences are being taken within pairs and then averaged.  

 

 

Table 6:  The parametric t-test, the approach advocated in Conover and Iman (1981) and 

a form of the Wilcoxon signed ranks test emphasizing similarities to the parametric 

approach. The value sR is the mean of the signed ranks. 

  

parametric approach                      Conover and Iman                 Wilcoxon signed ranks 

                                                        rank-based test                                                     
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 where 6/)12)(1()(  DDs nnRV  (see Appendix, this is approximately 

correct when there are a limited number of ties). 

 

Using the last column of Table 5 it is easy to verify that 357.5sR , 14Dn (the number 

of differences) and 87.6
DRs . Using these values it is easy to confirm that the Wilcoxon 

signed ranks formula in Table 6 yields the same z-score as found above. Conover and 

Iman’s approach produced the smallest p-value (0.012), generating a test statistic of 2.92 

with 13 degrees of freedom. 

       

So which answer is best? Because the sample size is small, all the p-values computed so 

far are approximate. Because there is an outlier, the parametric p-value is quite suspect. 

The best approach for these data is a rank-based permutation test. In fact, for these data 

the permutation test p-value is 0.0166.  Both of the rank-based approaches (z and t) 

produced p-values much smaller than the parametric test, and reasonably close to the 

correct p-value. Although the tabulated result of the permutation test is best, it is not 

unreasonable to use rank-based tests with the normal (or t) approximation. However, the 

parametric procedure produces a poor result because of the outlier in the data.   

 

 

6.  Testing k independent samples using ranks 
 

If students are exposed to one-way analysis of variance, the rank-based analogs are 

straightforward extensions of the two-sample procedures. As with the Mann-Whitney 

test, all the data are ranked from smallest to largest. We then want to know if the groups 

have similar average ranks, or if at least one group has a substantially different average 

rank. The Conover and Iman (1981) approach is a generalization of a t test and is 

naturally an F test. The second approach we advocate is a generalization of a z test and is, 

as one might suspect, a χ2 test. 
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Consider the DASL waste run up data. In this example there are five suppliers and the 

response = percentage wasted material working by hand – percentage waste using a 

computer layout. Is the response, some measure of excess waste, the same for all 

suppliers? 

 

 
Figure 2:  A data set with a large number of outliers.   

 

The usual rank-based test, the Kruskal-Wallis test, compares the sum of the ranks and the 

expected sum of the ranks for each group:   iii nNnSNNH /]2/)1([)]1(/[12 2
, 

where the iS and in  are the sums of the ranks and sample sizes for each group, 

respectively. H is distributed 2

1k  when the null hypothesis is true. 

 

The usual parametric F test statistic is 1.16 with a p-value of 0.334, but given the 

preponderance of outliers in the data, this result hardly seems reliable. An F test statistic 

on the ranked data, following Conover and Iman (1981), produces an F of 4.38 and a p-

value of 0.003. The Kruskal-Wallis test produces a test statistic of 15.32 with a p-value of 

0.004. Both rank-based methods produce p-values similar to each other and vastly 

different from the p-value produced by the (erroneously applied) parametric test. 

  

There is a way to produce the Kruskal-Wallis test statistic that is a simple generalization 

of our presentation of the Mann-Whitney test statistic.  First note that the average rank, 

under the null hypothesis, is (N+1)/2. Next standardize the average rank of each group: 

    2/1
/)(/2/)1( iii nRVNRz    and 



 
k

i

ik z
1

22

1  where V(R) = N(N+1)/12 as before 

(see appendix).  
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Table 7:  The average rank for each group, the sample size, and the standardized rank 

based on an expected mean of (N+1)/2 = 48 and a variance of V(R) ≈ 760. 

 

Site average rank Sample size standardized 

Supplier 1 31.23 22 z1 =  -2.8532 

Supplier 2 51.30 22 z2 =   0.5615 

Supplier 3 43.71 19 z3 =  -0.6783 

Supplier 4 56.89 19 z4 =   1.4056 

Supplier 5 64.08 13 z5 =   2.1031 

 

 

It is easy to verify that the sum of these squared standardized values in Table 7 is 15.32, 

the value of the Kruskal-Wallis test statistic.  

 

7.  Which is best, the t-test or z-test? 
 

Data exist for which parametric methods are inappropriate. Nonparametric methods 

should be part of a first or second course in statistics. Rank-based methods are both some 

of the most powerful nonparametric methods, and some of the easiest to motivate based 

on similarities to parametric tests.  If such methods are taught at this introductory level, 

either approach presented here (the t-based approach of Conover and Iman or the z- based 

approach) is more natural than the usual presentations of the Wilcoxon signed rank test, 

the Mann-Whitney test, and the Kruskal-Wallis test.  

 

The two approaches (t- and z-tests) are essentially the same since there exists a one-to-

one mapping between the two procedures and both procedures are large-sample 

approximations (Conover and Iman, 1981.) Let   be the degrees of freedom for a t test. 

For the Wilcoxon signed ranks test and the Mann-Whitney test 
2/12

,, )]/()1[(   RR ttz  converts the t-score to a z-score; alternatively 

2/12

, )]1/([ zvvztR   converts the z-scores into t-scores. (This is easily verified with 

the examples given.) A similar mapping exists between the F- and χ2- tests (Conover and 

Iman, 1981.) These relationships hold exactly even when there are ties. 

 

From the mathematical point of view, the choice is arbitrary. The choice should be based 

on how the nonparametric methods will fit in with the rest of a textbook, and what topics 

the instructor wishes to emphasize. The answer depends partly on how an instructor 

answers three questions:    

 

Do I want to emphasize t- and F-procedures or z- and χ2- procedures? 

Do I want to teach many nonparametric procedures or just rank-based procedures? 

Do I want to introduce nonparametric methods embedded throughout the course, or in a 

single section near the end of a first course or near the beginning of a second course? 

 

The main advantages of the z-based approach are that the z-scores are identical to the 

rank-based tests, the generalization to k-samples does not require knowledge of F-tests 
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(the Kruskal –Wallis test can be taught without teaching one-way ANOVA!), and the 

emphasis is on z-scores where the variance is known. This approach is ideally suited 

when a collection of nonparametric methods (including methods like the signs test, which 

are not rank-based) are presented as a group after discussion of correlation, ANOVA, and 

χ2. For a class in which χ2 is emphasized, this approach is ideal because the methods 

make connections between z and χ2; this form of the Kruskal-Wallis test reinforces and 

builds upon χ2 ideas. 

 

The main advantage of the t-based approach is that the different rank-based tests can be 

presented side by side with their companion t –tests in different sections as each 

procedure is introduced. In such a course each rank-based test is presented as soon as the 

need arises.  In a course that spends a lot of time on t- and F- tests, and little time on χ2 

tests, this approach is far more natural, especially when the Kruskal-Wallis test is 

included.  For an example of a textbook that has already adopted some elements of this 

approach see Iman (1994).              

 

There is an additional advantage to the t-based approach. There are other methods of 

scoring data based on ranks (Lehmann, 1975; Randles and Wolfe, 1979).  The t-based 

procedure handles these other cases just as easily as the cases presented. The z-based 

method would require the derivation of a new variance following the manner of 

reasoning found in the appendix. This variance might not always have a concise closed 

form.    

 

8.  Summary 
 

Nonparametric methods are important and should be part of a first or second course in 

statistics. As usually presented, they are best viewed as permutation tests, a topic rarely 

discussed in introductory statistics. However, as presented in this article, an important 

class of nonparametric tests, rank-based tests, are straightforward extensions of 

parametric methods widely taught in introductory statistics.  

 

Skewed data (cloud seeding example) and data with outliers (waste run up example) 

present difficulties for parametric methods that are easily addressed by switching to  

rank-based methods. Even for small data sets (fish prices example), the large sample 

approximations to rank-based tests are reliable to the same degree that parametric 

methods are reliable for small samples.  

 

As useful as rank-based methods are, the presentation of the large sample formulas 

frequently focus on a permutation point of view, which is unfamiliar to many students 

(and teachers) of introductory statistics.  The method of assigning scores is itself easy to 

explain, but once these scores are assigned the resulting formulas do not develop in the 

way these students would naturally expect. It seems more natural, especially for this 

particular audience, to work with averages and standard deviations (standard errors) of 

those averages as we typically do with all the parametric z, t and F tests.  
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In fact, there are two simple solutions. The first is to just treat the resulting scores like 

any other data, producing t and F tests nearly identical to their parametric cousins. The 

second approach is to derive the traditional tests in a manner that emphasizes structural 

similarities to corresponding parametric tests. Both approaches offer a way to present 

nonparametric tests that can be easily motivated and fit with the mainstream of 

introductory inferential statistics.              
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Appendix: derivation of new versions of rank-based tests 
 

One sample case: 

 

For sufficiently large sample sizes, the average of the signed ranks is approximately 

normal. The test is straightforward once the variance of the signed ranks is known.  

 

The signed ranks, sR , take on the integers 
Dn...1  with a sign associated with each ranked 

value. Under the null hypothesis, the average of the signed ranks is zero, 0)( sRE .   

 

 
 



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1
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which simplifies to the formula given in the paper. 

 

When there are ties the variance is still 


Dn

k

k

D

R
n 1

2||
1

, but the closed form formula is now 





 g

k

kkk

D

DD ttt
n

nn

1

)1()1(
12

1

6

)12)(1(
where g is the number of groups with ties 

and tk is the number of ties in group k (this formula is analogous to Hollander and Wolfe, 

1999, page 38). 

 

K sample case (including two sample case): 

 

The following “derivation” is more intuitive than rigorous.  Nevertheless, the resulting 

formulas produce the correct z-score for the Mann-Whitney test and the correct chi-

square test statistic for the Kruskal-Wallis test.  

 

Assume all the observations really come from a single distribution (this implies both that 

the null hypothesis is true and that groups share a common shape and spread) and are 

independent. Suppose further the sample size is sufficiently large that average ranks are 

approximately normally distributed. The observations are assigned ranks. Under the null 

hypothesis the ranks can now be thought of as a single group of independent observations 

with a common shape, center and spread. The ranks, R, take on the integers 1…N. 

 

The mean of the ranks is obviously (N+1)/2, and the pooled variance is 

   

12

)1(

1

2/)1(

1

2)1(

)(
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2
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2










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
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N

j

N

j

j

 
 

In this case the denominator is N – 1 because of the covariance of the ranks among 

themselves, as the ranks must average (N+1)/2. (In the derivation of the one sample 

variance on signed ranks the signed ranks have zero covariance with each other.) 
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When there are ties the variance is still 

 

1

2/)1(
1

2




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N

NR
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j

j

, but the closed form formula 

is now 






 g

k

kkk ttt
N
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1

)1()1(
)1(12

1

12

)1(
where g is the number of groups with ties 

and tk is the number of ties in group k (this formula is analogous to Hollander and Wolfe, 

1999, page 109). 

 

Suppose the observations are arbitrarily broken up into k subgroups (assuming each 

subgroup is still sufficiently large that average ranks are approximately normal) and an 

average rank is computed for each subgroup. Let subgroup i have 
in observations and an 

average rank denoted iR . Given the initial suppositions (common mean and spread) 

, 2/)1()(  NRE i  and  ii nRVRV /)()(   so iz
 ii nRVNR /)(/]2/)1([   are the 

standardized average ranks. Because the average ranks are approximately normal, iz  are 

approximately standard normal. 

 

These standardized average ranks can be combined using the usual argument that sums of 

squared (approximately) standard normal random variables are (approximately) χ2, but 

with only k-1 degrees of freedom because of the covariance among the average ranks. 

When k = 2 this produces the Mann-Whitney test (in this case, equivalence to the formula 

found on the right side of Table 2 involves tedious algebra).     
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