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Abstract

The objective of the present paper is to provide a simple approach to statistical inference
using the method of transformations of variables. We demonstrate performance of this powerful
tool on examples of constructions of various estimation procedures, hypothesis testing, Bayes
analysis and statistical inference for the stress-strength systems. We argue that the tool of
transformations not only should be used more widely in statistical research but should become
a routine part of calculus-based courses of statistics. Finally, we provide sample problems for
such a course as well as possible undergraduate reserach projects which utilize transformations
of variables.

Key words: Transformations of variables, estimation, testing, stress-strength model, Bayesian
inference.

1 Introduction

Transformations of random variables have been a standard tool in statistical inference. They have
been used for solutions of a variety of statistical problems such as nonparametric density estima-
tion, nonparametric regression, analysis of time series, construction of equivariant estimators and
de-noising (see, e.g., [9], [11], [12], [14], [18], [19] and [21]). However, with a number of complex ap-
plications of transformation tools, one very simple application of transformations has been largely
overlooked by the statistical community. This paper discusses utilization of a well-known fact that,
when some of the parameters are treated as known, the majority of familiar probability distribu-
tions are just transformations of one another. Therefore, results of parametric statistical inference
for one family of pdfs can be reproduced without much work for another family.

How many distributions are there in statistics? There are several dozens of them in the two
volumes of “Continuous Univariate Distributions ” [6] and [7]. One will find similar lists in many
other books, the goal of which is statistical inference of a certain type such as, for example, in [20].
In the majority of texts, estimators, tests and other statistical procedures are usually constructed
for each distribution family separately which leads to a great deal of calculations and sometimes
errors. Unifying those procedures will result in saving hours of work.

The objective of the present paper is to provide a simple approach to statistical inferences using
the method of transformations of variables. We demonstrate performance of this powerful tool on
examples of constructions of various estimation procedures, hypothesis testing, Bayes analysis and
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statistical inference for the stress-strength systems. To the best of authors’ knowledge, standard
courses in statistics usually mention transformations only in relation to the maximum likelihood
estimation (MLE) procedure. We argue that the tool of transformations not only should be used
more widely in statistical research but should become a routine part of calculus-based courses of
statistics. The material of the present paper can be used as such a supplement. For this purpose,
we provide several sample homework problems and undergraduate research projects. Note that,
although in what follows we consider only the case of a one-dimensional random variable, the theory
has obvious extension to the case of random vectors. However, making this generalization in the
present paper will unnecessarily complicate the presentation.

Consider a random variable X with the pdf f(x|θ), where parameter θ is a scalar or a vector.
Suppose also that there exist a random variable ξ, a monotone function u and a one-to-one trans-
formation ν such that X = u(ξ), where the pdf g(ξ|τ) of ξ has a different parameterization from
X , namely,

g(ξ|τ) = f(u(ξ)|ν(τ)) |u′(ξ)|, θ = ν(τ). (1)

Denoting u−1 = v and ν−1 = η, we rewrite (1) as

f(x|θ) = g(v(x)|η(θ)) |v′(x)|, τ = η(θ). (2)

Now, let g(ξ|τ) be a popular distribution family, so that all sorts of statistical results are available.
The objective of the present paper is to show how these results can be re-formulated for f(x|θ).
Notice that the correspondence (1) is quite common but, however, is not used to a full extent.
For example, Table 1 contains distributions which can be obtained from one or two parameter
exponential distributions by appropriate re-parameterization. Our goal is however not to explore
all possible correspondences of this sort but to provide few examples which will illustrate the gen-
eral idea. The theory presented herein can be easily extended to many more kinds of statistical
procedures and various other families of distributions.

Critics of this paper can adequately remark that some of the results listed here can be obtained
in a general form for, say, one or two-parameter exponential families. The goal, however, is not
to provide such a generalization but to supply a simple and yet powerful methodological tool to
modify statistical procedures. The scale and location-scale families of exponential distributions are
used here only as an example. In fact, techniques described below can be used for a distribution
family which does not have a sufficient statistic.

The rest of the paper is organized as follows. In Section 2 we consider basic statistical in-
ference for f(x|θ) based on our knowledge of inference for g(ξ|τ): sufficient statistics, maximum
likelihood estimators (MLE) and uniform minimum variance unbiased estimators (UMVUE), Bayes
estimators, interval estimators and likelihood ratio tests. Section 3 deals with more sophisticated
statistical inference such as analysis of stress-strength systems and elicitation of noninformative
priors. In both Sections 2 and 3, we provide examples of statistical procedures which can be ob-
tained with no effort by using known results and applying transformation of variables suggested
in this paper. Section 4 presents several sample homework problems and undergraduate research
projects. Section 5 concludes the paper with the discussion.
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Table 1. Transformations of random variables.

f(x|θ) Transforms g(ξ|τ)

Weibull distribution: v(x) = xα One-parameter
f(x|σ) = θ = σ exponential distribution:
α
σα xα−1 exp

{
−

(
x
σ

)α}
, τ = λ g(ξ|λ) = λ exp {−λξ} ,

α known, x > 0. η(σ) = σ−α ξ > 0.
Rayleigh distribution: v(x) = x2/2 One-parameter
f(x|σ) = θ = σ exponential distribution:
x
σ exp

{
− x2

2σ

}
, τ = λ g(ξ|λ) = λ exp {−λξ} ,

x > 0. η(σ) = σ−1 ξ > 0.
Burr type X distribution: v(x) = − ln(1− e−x2

) One-parameter
f(x|σ) = θ = σ exponential distribution:
2σxe−x2

(1 − e−x2
)σ−1, τ = λ g(ξ|λ) = λ exp {−λξ} ,

x > 0. η(σ) = σ ξ > 0.
Burr type XII distribution: v(x) = ln(1 + xα) One-parameter
f(x|σ) = θ = σ exponential distribution:

αxα−1

σ(1+xα)
1+σ

σ
, τ = λ g(ξ|λ) = λ exp {−λξ} ,

α known, x > 0. η(σ) = σ−1 ξ > 0.
Extreme Value distribution: v(x) = exp {x} − 1 One-parameter
f(x|σ) = θ = σ exponential distribution:
1
σ exp

{
x − expx−1

σ

}
, τ = λ g(ξ|λ) = λ exp {−λξ} ,

x > 0. η(σ) = σ−1 ξ > 0.
One-parameter Beta distribution: v(x) = − ln(x) One-parameter
f(x|σ) = θ = σ exponential distribution:
σxσ−1I(0 < x < 1) τ = λ g(ξ|λ) = λ exp {−λξ} ,

η(σ) = σ ξ > 0.
Pareto distribution: v(x) = lnx Two-parameter
f(x|σ, ρ) = θ = (σ, ρ) exponential distribution:
σρσ

xσ+1 I(x ≥ ρ). τ = (λ, µ) g(ξ|µ, λ) = λ exp {−λ(ξ − µ)} ,

η(σ, ρ) = (σ, lnρ) ξ ≥ µ.

Power distribution: v(x) = ln(1/x) Two-parameter
f(x|σ, ρ) = θ = (σ, ρ) exponential distribution:
σ
ρσ xσ−1I(0 < x < ρ). τ = (λ, µ) g(ξ|µ, λ) = λ exp {−λ(ξ − µ)} ,

η(σ, ρ) = (σ, ln(1/ρ)) ξ ≥ µ.
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2 Basic Statistical Inference Procedures

In this section we discuss construction of the basic statistical procedure for f(x|θ) based on the
relevant knowledge for g(ξ|τ). We provide the statements followed by few examples of their appli-
cations. The proofs of all statements are very elementary and can be obtained by simple change
of variables. Note that, while Theorem 2 on the use of transformations for construction of the
MLEs is the common knowledge, the rest of the statements, though very useful, rarely appear in
statistical texts.

Let the relation between f(x|θ) and g(ξ|τ) be given by (1) and (2) and X = (X1, X2, · · · , Xn)
and ξ = (ξ1, ξ2, · · · , ξn) be the independent and identically distributed (i.i.d.) samples from those
pdfs with Xi = u(ξi), i = 1, · · · , n. Then the parametric family f(x|θ) inherits all useful properties
of the family g(ξ|τ). To simplify the notations, in what follows v(X) = (v(X1), v(X2), · · · , v(Xn)).

Theorem 1 (Sufficient statistics) Let T (ξ) = T (ξ1, ξ2, · · · , ξn) be a scalar or vector valued suf-
ficient statistic for the family of pdfs g(ξ|τ). Then T ∗(X) = T (v(X)) is a sufficient statistic for
the family of pdfs f(x|θ).

Theorem 2 (MLE) Let U(ξ) = U(ξ1, ξ2, · · · , ξn) be a MLE of τ based on the sample ξ. Then
U∗(X) = ν(U(v(X))) is the MLE of θ based on observations X. If, moreover, T = T (ξ) is a
sufficient statistic for τ , so that the MLE of τ has the form U(ξ) = V (T ), then the MLE of θ is
U∗(X) = ν(V (T ∗)) where T ∗ = T ∗(X) is defined in Theorem 1.

Theorem 3 (UMVUE) Let h(τ ) be a function of τ and let V (T ) be the UMVUE of h(τ ) based
on the sufficient statistic T = T (ξ). Then V (T ∗) is the UMVUE of h∗(θ) = h(η(θ)) based on the
sufficient statistic T ∗(X).

Corollary 1 (UMVUE) Let Ψ(ξ1, · · · , ξs) be a function of observations ξ1, · · · , ξs with expectation
Eτ Ψ(ξ1, · · · , ξs) over the pdf

∏s
j=1 g(ξj |τ). If V (T ) is the UMVUE of Eτ Ψ(ξ1, · · · , ξs), then V (T ∗)

is the UMVUE of EθΨ(v(X1), · · · , v(Xs)).

Theorem 4 (Bayes) Let U(ξ) = U(ξ1, ξ2, · · · , ξn) be the Bayes estimator of h(τ) based on the
sample ξ and the prior pdf π(τ). Then, U∗(X) = U(v(X)) is the Bayes estimator of h∗(θ) =
h(η(θ)) based on the sample X and prior pdf π(η(θ)) |Jη(θ)| where |Jη(θ)| is the Jacobian of the
transformation η(θ). Moreover, if g(τ |ξ) is the posterior pdf of τ given ξ based on the prior pdf
π(τ) then g∗(θ|X) = g(η(θ)|v(X)) |Jη(θ)| is the posterior pdf of θ corresponding to the prior pdf
π(η(θ)) |Jη(θ)|.

Theorems 2–4 and Corollary 1 refer to construction of various types of point estimators. However,
interval estimation and hypothesis testing procedures can be modified in a similar way. We give
few examples below.

Theorem 5 (Interval estimation) Let ϕ(τ) be a parametric function of interest and let (U(ξ), U(ξ))
be an interval estimator of ϕ(τ) corresponding to the confidence level (1 − γ), i.e.

P (U(ξ) < ϕ(τ) < U(ξ)) ≥ 1 − γ.

Let U∗(X) = U(v(X)) and U
∗(X) = U(v(X)). Then

(
U∗(X), U∗(X)

)
is an interval estimator of

ϕ(η(θ)) corresponding to the confidence level (1− γ).
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Theorem 6 (Likelihood ratio test) Let U(ξ) = U(ξ1, ξ2, · · · , ξn) be a likelihood ratio test (LRT)
statistic for testing hypothesis H0 : τ ∈ Ω0 versus H1 : τ ∈ ΩC

0 . Consider sets Θ0 and ΘC
0 such that

τ ∈ Ω0 ⇔ θ = ν(τ ) ∈ Θ0, τ ∈ ΩC
0 ⇔ θ = ν(τ ) ∈ ΘC

0 .

Then U∗(X) = U(v(X)) is a LRT statistic for testing hypothesis H∗
0 : θ ∈ Θ0 versus H∗

1 : θ ∈ ΘC
0 .

Moreover, if U(ξ) > Cγ is a level γ test for H0, then U∗(X) > Cγ is a level γ test for H∗
0 .

Example 1. Consider the task of finding the UMVUE of ln(σ) given a sample X from the Weibull
distribution (see Table 1). Using the fact that σ = ν(λ) = λ−1/α we obtain ln(σ) = −1/α ln(λ).
Then, the UMVUE of ln(λ) based on the sample ξ from the one-parameter exponential distribution
is of the form (see [20], page 359)

V (T ) = ln(T )− Ψ(n) (3)

where T = ξ̄ and Ψ(n) = is the Euler’s psi-function Ψ(x) = d
dx ln Γ(x). Theorems 1 and 3

with v(x) = xα imply that the UMVUE for ln(σ) is V (T ∗) = −1/α[ln(T ∗) − Ψ(n)] where T ∗ =
n−1 ∑n

i=1 Xα
i .

Note that the formula for UMVUE of ln(σ) is not listed in the most comprehensive existing
collection of UMVUEs [20] in the table for the Weibull distribution nor are estimators for many
other functions of σ that can be easily obtained by using our simple technique. Moreover, the
method of transformations of random variables is not even listed among half a dozen techniques
suggested for derivation of UMVUEs. If the authors introduced this very simple idea in the book,
the tables would be more comprehensive, and the book would be much shorter.

Example 2. The tool of transformations is very useful for solution of simple problems
in various statistics courses. For example, consider problem 8.17 in [4] which we re-formulate
in notations of the present paper. When (X1, · · · , Xn) and (Y1, · · · , Ym) are samples from one-
parameter beta distributions (see Table 1) with parameters σ1 and σ2, respectively, the objective
is to construct the LRT for the hypothesis H∗

0 : σ1 = σ2 = σ versus H∗
1 : σ1 6= σ2, to show that this

test can be based on statistics
T ∗ =

∑
log Xi∑

log Xi +
∑

log Yi
(4)

and to find the distribution of T ∗ when H0 is true. For this purpose, turn to problem 8.6 in the
same section of [4] where samples (X1, · · · , Xn) and (Y1, · · · , Ym) have one-parameter exponential
distributions with parameters λ1 and λ2, respectively, and the goal is to construct the same LRT
for the hypothesis H0 : λ1 = λ2 = λ versus H1 : λ1 6= λ2, to show that this test can be based on
statistics

T =
∑

Xi∑
Xi +

∑
Yi

and to find the distribution of T when H0 is true. Solving problem 8.6 we discover that the rejec-
tion region for H0 is of the form Tn(1 − T )m ≤ c and, since when H0 is true,

∑
Xi and

∑
Yi have

Gamma (n, λ) and Gamma (m, λ) distributions respectively, T has the Beta (n, m) distribution.
Now, use the fact (see Table 1) that whenever X has a one-parameter Beta distribution, lnX has
the one-parameter exponential distribution with identical parameterization. Hence, T ∗ given by (4)
has the same Beta (n, m) distribution as T and the rejection region for H∗

0 is (T ∗)n[1− (T ∗)]m ≤ c.
Similarly, the LRTs can be constructed for all distributions which can be obtained by transforma-
tions of variables from the one-parameter exponential distribution.

5



3 More Sophisticated Applications

Applications of transformations are not limited to elementary statistical inference procedures. In
what follows, we consider two models where transformations of variables can provide a final result
with very little effort: the stress-strength system and derivation of noninformative priors. However,
we want to point out that applications of transformation of variables are by no means limited to
these two cases.

3.1 The Stress-Strength Problem

Consider estimation of probability R = P (X1 < X2) on the basis of observations X(i) = (X(i)
1 , · · · , X(i)

ni ),
i = 1, 2. If X1 is the stress applied to the device and X2 is its strength, then R is the probability
of successful operation of the device, and the problem of drawing statistical inference about R is
called the stress-strength problem.

Let, as before, random variables Xi, i = 1, 2, have pdfs fi(xi|θi) and Xi = u(ξi) where u is a
monotone function. Then, similarly to (1), ξi, i = 1, 2, have the pdfs gi(ξi|τ i) of the forms

gi(ξi|τ i) = fi(u(ξi)|ν(τ i)) |u′(ξi)|, θi = ν(τ i). (5)

where ν is a one-to-one transformation. As before, denote u−1 = v and ν−1 = η and observe that
if the function u is monotonically increasing, then R∗ = P (X1 < X2) = P (u(ξ1) < u(ξ2)) =
P (ξ1 < ξ2) = R, so that R remains invariant. If u is a decreasing function then, similarly,
R∗ = P (ξ1 > ξ2) = 1 − R. Hence, if gi(ξi|τ i), i = 1, 2, are familiar distribution families, and
statistical inference procedures are available for these families, results can be easily reformulated
for the families fi(xi|θi), i = 1, 2. The example below is one of many where authors waste a lot of
effort instead of simply writing the final result.

Example 3. Consider, for example, the situation described in [15] where both X1 and X2 have
the Burr type X distributions (see Table 1). The objective of the authors is to find the MLE and the
UMVUE of R and also to develop lower confidence bounds for R. The authors carry out all details
of statistical inference while the only thing they need is to exploit known results for estimation
of R in the case when ξi, i = 1, 2, have one-parameter exponential distributions. In particular,
they could just copy the estimators of Tong [17] with the only difference that sufficient statistics
Ti =

∑ni
j=1 ξ

(i)
j should be replaced by T ∗

i = −
∑ni

j=1 ln(1− exp(−X
(i)
j ), i = 1, 2, and R∗ = 1−R (see

Theorems 1 and 3). Similarly, the confidence intervals for R∗ can be obtained using known results
by Enis and Geisser [5].

3.2 Elicitation of Noninformative Priors

Bayesian inference can be carried out with various kinds of prior distributions. However, in order to
minimize subjectivity contributed by the choice of prior, one may choose objective Bayesian analysis,
which is based on noninformative prior pdfs. There are various kinds of noninformative priors, e.g.,
Jeffreys’ prior, reference prior and matching prior (for the review of noninformative priors see, e.g.,
[2], [3] or [13]). Evaluation of those priors is usually not an easy task, therefore many authors were
involved in their derivation. To help researchers in their use of objective Bayesian methods, Yang
and Berger [22] compiled the catalog of noninformative priors. It is evident from the catalog, that if
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the pdfs of two distributions are related to each other as (1) and (2), and π(τ) is the Jeffreys or ref-
erence noninformative prior for g(ξ|τ), then π∗(θ) = π(η(θ)) |Jη(θ)| is the noninformative prior of
the same kind for f(x|θ) (compare with Theorem 4). Hence, one can find noninformative priors for
less common distribution families easily using transformations without re-doing all the calculations.

Example 4. Consider the problem of finding noninformative priors for parameter σ of Burr
type X distribution and parameters (σ, %) of the Pareto distribution (see Table 1). Note that neither
of the families is a location-scale parameter family, and the catalog does not list the expressions
for the Jeffreys and reference priors in this case. However, it states that in the case of the one-
parameter exponential distribution the Jeffreys and the reference priors are of the form 1/λ while
in the case of the two-parameter exponential distribution the Jeffreys prior is 1 while the reference
prior is 1/λ. Hence, the Jeffreys and the reference priors for the parameter σ of Burr type X
distribution are both equal to 1/σ, while in the case of the Pareto distribution the Jeffreys prior is
equal to 1 while the reference prior is 1/σ.

Example 5. In [8], Kim et al. developed the Jeffreys’ and the reference priors for the
stress-strength system in the case of the Burr type X distribution. However, since the Burr type
X distribution can be obtained from the one-parameter exponential distribution by setting ξ =
− ln(1 − e−X2

), the results could have just been copied from [16] where noninformative priors are
obtained in the case of the one-parameter exponential distribution. Namely, the Jeffreys’ and the
reference priors which both are equal to 1/(λ1λ2) where λ1 and λ2 are the scale parameters of the
exponential distributions. Thompson and Basu [16] also derived the corresponding posterior pdf.
Hence, the Jeffreys’ and the reference priors coincide in the case of the Burr type X distribution
and are equal to 1/(σ1σ2). The corresponding posterior can be found from [16] by replacing x with
− ln(1− e−x2

) in the posterior and multiplying it by xe−x2
.

4 Incorporating Transformations into Statistics Courses

Even in the absence of specific materials in the current textbooks, transformations of variables
can be incorporated into an advanced course on statistical inference. While teaching topics in
probability, an instructor should explain how one distribution can be obtained from another via
transformations of variables (using, for example, Table 1 of this paper). Then each of the standard
topics in statistical inference can be supplemented by examples and problems where transforma-
tions are applied. For this purpose, of course, Theorems 1–6 of this paper should be presented
in class at appropriate moments. Below we list few sample problems which can be assigned for
homework and more advanced projects that are suitable for undergraduate research.

Problem 1. The MLE of the parameters λ and µ in the two-parameter exponential distribution
are X̄−1 and X(1), respectively. Using transformations of variables and Table 1, a) find the MLE’s
of the parameters % and σ of the Pareto distribution; b) find the MLE’s of the parameters % and σ
of the Power distribution.

Problem 2. It is well known that X̄ is the UMVUE of 1/λ where λ is the scale parameter
in one-parameter exponential distribution (see Table 1). Using transformations of variables and
Table 1, a) find the UMVUE of the parameter σ of the Rayleigh distribution; b) find the UMVUE
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of the parameter σ of the Extreme Value distribution.
Can the UMVUE for the parameter σ of the Weibull distribution be constructed using transforma-
tion techniques if parameter α of the Weibull distribution is known and α 6= 1?.

Problem 3. a) Find the LRT of

H0 : µ ≤ 0 versus H1 : µ > 0

based on sample X1, · · · , Xn from a population with the pdf f(x|λ, µ) = λ exp(−λ(x−µ)) I(X ≥ µ)
where both µ and λ are unknown (problem 8.7(a) of [4]).
b) Using transformations of variables and Table 1 find the LRT of

H0 : % ≤ 0 versus H1 : % > 0

based on a sample from a two-parameter Pareto distribution where both parameters % and σ are
unknown.

Sample project 1. Monograph [20] contains UMVUEs for a variety of distribution families
and parametric functions. However, as Example 1 of this paper shows, the lists of UMVUEs are
not complete. For example, Section A5 contains unbiased estimators of 105 functions of λ in
one-parameter exponential family (some of those estimators are also suitable for functions of the
scale parameter of the gamma distribution with the known shape parameter). However, Section A7
presents unbiased estimators for only 31 functions of the scale parameter of the Weibull distribution
and Section A8 lists unbiased estimators for only 32 functions of the parameter of the Rayleigh
distribution. Using Table 1 and technique of transfromations, one can expand the collection of
UMVUEs in Sections A7 and A8 using the UMVUEs in Section A5 of [20]. Some of these estima-
tors will be totally new and can be published.

Sample project 2. Monograph [10] discusses a variety of techniques for point and interval es-
timation of R = P (X1 < X2) on the basis of observations X(i) = (X(i)

1 , · · · , X(i)
ni ), i = 1, 2, when X1

and X2 belong to familiar distribution families. In the case when X1 and X2 are independent nor-
mally distributed random variables, the authors describe construction of the MLEs, the UMVUEs,
the Bayes estimators and exact and asymptotic confidence intervals for R (see Sections 3.1.1, 3.2.1,
3.3.1, 4.1.2 and 4.2.1, respectively). However, for some distribution families the inference for R has
never been pursued. One of the examples is the alpha distribution α(µ, τ) with the pdf

f(x|µ, τ) =
1√

2πτx2
exp

{
− 1

2τ

(
1
µ
− 1

x

)2
}

.

Let X1 ∼ α(µ1, τ1) and X2 ∼ α(µ2, τ2) be independent random variables. After a careful exam-
ination one can notice that the alpha distribution can be obtained from the normal distribution
by mere transformation of variables and parameters. Hence, using transformation of variables, one
can derive the MLE, the UMVUE, the Bayes estimator and an exact and an asymptotic confidence
intervals for R in the case of the alpha distribution family (see also Theorems 2.7–2.9 in [10] which
describe applications of transformations in the case of the stress-strength problem). The resulting
estimators will be entirely new and of interest to researchers in the field of reliability.
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5 Discussion

In the present paper, we exploit the tool of transformations of random variables to obtain various
statistical inference procedures with minimal effort. We discuss a few very straightforward examples
of applications of the transformations which can be appreciated even by a student who took an
upper level undergraduate/lower level graduate statistics course. Moreover, using simple techniques
suggested above, one can easily expand the list of UMVUEs provided in [20] and construct statistical
procedures for less familiar distribution families using known results. In addition, we discuss
few more sophisticated applications of the transformation techniques in stress-strength model and
elicitation of prior distributions.

The utility of the method, however, is not limited to just the procedures and models discussed
in Sections 2 and 3. It can be applied to virtually any area where one has to deal with a variety
of parametric families of distributions. It can be argued that since transformation of variables is
the routine part of almost any calculus-based statistics course, it would be worth introducing the
methodology developed above into standard textbooks, thereby saving hundreds of hours which are
spent on re-deriving inferential procedures for various distribution families.
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